
Open Shading Language 1.11
Language Specification

c© Copyright 2009-present Contributors to the Open Shading Language project.
All rights reserved.

Editor: Larry Gritz
lg@imageworks.com

Date: 11 Aug 2020

ii

The Open Shading Language specification, source code, and documentation are:

Copyright c© 2009-present, Contributors to the Open Shading Language project. All Rights
Reserved.

The code that implements Open Shading Language is licensed under the BSD 3-clause (also
sometimes known as “new BSD”) license:

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This specification and other text documentation about Open Shading Language is licensed
under a the Creative Commons Attribution 4.0 Unported License.

http://creativecommons.org/licenses/by/4.0/

Open Shading Language Specification

Contents

1 Introduction 1

2 The Big Picture 5

3 Lexical structure 11
3.1 Characters . 11
3.2 Identifiers . 11
3.3 Comments . 11
3.4 Keywords and reserved words . 12
3.5 Preprocessor . 12

4 Gross syntax, shader types, parameters 15
4.1 Shader types . 15
4.2 Shader parameters . 16
4.3 Shader metadata . 18
4.4 Public methods . 22

5 Data types 23
5.1 int . 23
5.2 float . 24
5.3 color . 25
5.4 Point-like types: point, vector, normal . 27
5.5 matrix . 29
5.6 string . 30
5.7 void . 31
5.8 Arrays . 31
5.9 Structures . 32
5.10 Closures . 33

6 Language Syntax 35
6.1 Variable declarations and assignments . 35
6.2 Expressions . 37
6.3 Control flow: if, while, do, for . 40
6.4 Functions . 42
6.5 Global variables . 44

iii

iv CONTENTS

7 Standard Library Functions 47
7.1 Basic math functions . 47
7.2 Geometric functions . 50
7.3 Color functions . 53
7.4 Matrix functions . 54
7.5 Pattern generation . 55
7.6 Derivatives and area operators . 61
7.7 Displacement functions . 62
7.8 String functions . 62
7.9 Texture . 65
7.10 Material Closures . 74
7.11 Renderer state and message passing . 78
7.12 Dictionary Lookups . 81
7.13 Miscellaneous . 82

8 Formal Language Grammar 83

9 Describing shader groups 89

A Glossary 93

Index 95

Open Shading Language Specification

1 Introduction

Welcome to Open Shading Language!

Open Shading Language (OSL) is a small but rich language for programmable shading in
advanced renderers and other applications, ideal for describing materials, lights, displacement,
and pattern generation.

OSL was developed by Sony Pictures Imageworks for use in its in-house renderer used for
feature film animation and visual effects. The language specification was developed with input
by other visual effects and animation studios who also wish to use it.

OSL is distributed under the “New BSD” license. In short, you are free to use it in your own
applications, whether they are free or commercial, open or proprietary, as well as to modify the
OSL code as you desire, provided that you retain the original copyright notices as described in
the license.

How OSL is different from other shading languages

OSL has syntax similar to C, as well as other shading languages. However, it is specifically
designed for advanced rendering algorithms and has features such as radiance closures, BSDFs,
and deferred ray tracing as first-class concepts.

OSL has several unique characteristics not found in other shading languages (certainly not
all together). Here are some things you will find are different in OSL compared to other lan-
guages:

Surface and volume shaders compute radiance closures, not final colors.

OSL’s surface and volume shaders compute an explicit symbolic description, called a “closure,”
of the way a surface or volume scatters light, in units of radiance. These radiance closures may
be evaluated in particular directions, sampled to find important directions, or saved for later
evaluation and re-evaluation. This new approach is ideal for a physically-based renderer that
supports ray tracing and global illumination.

In contrast, other shading languages usually compute just a surface color as visible from
a particular direction. These old shaders are “black boxes” that a renderer can do little with
but execute to for this once piece of information (for example, there is no effective way to
discover from them which directions are important to sample). Furthermore, the physical units
of lights and surfaces are often underspecified, making it very difficult to ensure that shaders
are behaving in a physically correct manner.

1

2 CHAPTER 1. INTRODUCTION

Surface and volume shaders do not loop over lights or shoot rays.

There are no “light loops” or explicitly traced rays in OSL surface shaders. Instead, surface
shaders compute a radiance closure describing how the surface scatters light, and a part of the
renderer called an “integrator” evaluates the closures for a particular set of light sources and
determines in which directions rays should be traced. Effects that would ordinarily require
explicit ray tracing, such as reflection and refraction, are simply part of the radiance closure and
look like any other BSDF.

Advantages of this approach include that integration and sampling may be batched or re-
ordered to increase ray coherence; a “ray budget” can be allocated to optimally sample the
BSDF; the closures may be used by for bidirectional ray tracing or Metropolis light transport;
and the closures may be rapidly re-evaluated with new lighting without having to re-run the
shaders.

Surface and light shaders are the same thing.

OSL does not have a separate kind of shader for light sources. Lights are simply surfaces that
are emissive, and all lights are area lights.

Transparency is just another kind of illumination.

You don’t need to explicitly set transparency/opacity variables in the shader. Transparency is
just another way for light to interact with a surface, and is included in the main radiance closure
computed by a surface shader.

Renderer outputs (AOV’s) are specified using “light path expressions.”

Sometimes it is desirable to output images containing individual lighting components such as
specular, diffuse, reflection, individual lights, etc. In other languages, this is usually accom-
plished by adding a plethora of “output variables” to the shaders that collect these individual
quantities.

OSL shaders need not be cluttered with any code or output variables to accomplish this.
Instead, there is a regular-expression-based notation for describing which light paths should
contribute to which outputs. This is all done on the renderer side (though supported by the OSL
implementation). If you desire a new output, there is no need to modify the shaders at all; you
only need to tell the renderer the new light path expression.

Shaders are organized into networks.

OSL shaders are not monolithic, but rather can be organized into networks of shaders (some-
times called a shader group, graph, or DAG), with named outputs of some nodes being con-
nected to named inputs of other nodes within the network. These connections may be done
dynamically at render time, and do not affect compilation of individual shader nodes. Further-
more, the individual nodes are evaluated lazily, only their outputs are “pulled” from the later
nodes that depend on them (shader writers may remain blissfully unaware of these details, and
write shaders as if everything is evaluated normally).

Open Shading Language Specification

3

No “uniform” and “varying” keywords in the language.

OSL shaders are evaluated in SIMD fashion, executing shaders on many points at once, but
there is no need to burden shader writers with declaring which variables need to be uniform or
varying.

In the open source OSL implementation, this is done both automatically and dynami-
cally, meaning that a variable can switch back and forth between uniform and varying, on an
instruction-by-instruction basis, depending on what is assigned to it.

Arbitrary derivatives without grids or extra shading points.

In OSL, you can take derivatives of any computed quantity in a shader, and use arbitrary quanti-
ties as texture coordinates and expect correct filtering. This does not require that shaded points
be arranged in a rectangular grid, or have any particular connectivity, or that any ”extra points”
be shaded.

In the open source OSL implementation, this is possible because derivatives are not com-
puted by finite differences with neighboring points, but rather by “automatic differentiation,”
computing partial differentials for the variables that lead to derivatives, without any interven-
tion required by the shader writer.

Acknowledgments

The original designer and project leader of OSL is Larry Gritz. Other early developers of OSL
are (in order of joining the project): Cliff Stein, Chris Kulla, Alejandro Conty, Jay Reynolds,
Solomon Boulos, Adam Martinez, Brecht Van Lommel.

Additionally, many others have contributed features, bug fixes, and other changes: Steve
Agland, Shane Ambler, Martijn Berger, Farchad Bidgolirad, Nicholas Bishop, Stefan Büttner,
Matthaus G. Chajdas, Thomas Dinges, Henri Fousse, Syoyo Fujita, Derek Haase, Sven-Hendrik
Haase, John Haddon, Daniel Heckenberg, Ronan Keryell, Elvic Liang, Max Liani, Bastien
Montagne, Erich Ocean, Mikko Ohtamaa, Alex Schworer, Sergey Sharybin, Stephan Steinbach,
Esteban Tovagliari, Alexander von Knorring, Roman Zulak. (Listed alphabetically; if we’ve left
anybody out, please let us know.)

We cannot possibly express sufficient gratitude to the managers at Sony Pictures Image-
works who allowed this project to proceed, supported it wholeheartedly, and permitted us to
release the source, especially Rob Bredow, Brian Keeney, Barbara Ford, Rene Limberger, and
Erik Strauss.

Huge thanks also go to the crack shading team at SPI, and the brave lookdev TDs and CG
supes willing to use OSL on their shows. They served as our guinea pigs, inspiration, testers,
and a fantastic source of feedback. Thank you, and we hope we’ve been responsive to your
needs.

OSL was not developed in isolation. We owe a debt to the individuals and studios who
patiently read early drafts of the language specification and gave us very helpful feedback and

Open Shading Language Specification

4 CHAPTER 1. INTRODUCTION

additional ideas, and especially to those at other companies who have taken the risk of incorpo-
rating OSL into their products and pipelines.

The open source OSL implementation incorporates or depends upon several other open
source packages:

• OpenImageIO c© 2008 Larry Gritz et al. http://openimageio.org

• Ilmbase c© 2006, Industrial Light & Magic. http://www.openexr.com

• Boost c© various authors. http://www.boost.org

• LLVM c© 2003-2010 University of Illinois at Urbana-Champaign. http://llvm.org

These other packages are all distributed under licenses that allow them to be used by and
distributed with Open Shading Language.

Open Shading Language Specification

http://openimageio.org
http://www.openexr.com
http://www.boost.org
http://llvm.org

2 The Big Picture

This chapter attempts to lay out the major concepts of Open Shading Language, define key
nomenclature, and sketch out how individual shaders fit together in the context of a renderer as
a whole.

A shader is code that performs a discrete task

A shader is a program, with inputs and outputs, that performs a specific task when rendering a
scene, such as determining the appearance behavior of a material or light. The program code is
written in Open Shading Language, the specification of which comprises this document.

For example, here is a simple gamma shader that performs simple gamma correction on is
Cin input, storing the result in its output Cout:

Outputs

{

 float gam = 1,

 output color Cout = 1

 Cout = pow (Cin, 1/gam);

}

shader gamma (

 color Cin = 1,

gam

Cin

Cout

Inputs

)

The shader’s inputs and outputs are called shader parameters. Parameters have default
values, specified in the shader code, but may also be given new values by the renderer at runtime.

Shader instances

A particular shader may be used many times in a scene, on different objects or as different
layers in a shader group. Each separate use of a shader is called a shader instance. Although all
instances of a shader are comprised of the same program code, each instance may override any
or all of its default parameter values with its own set of instance values.

Below is a schematic showing a gamma instance with the gam parameter overridden with an
instance-specific value of 2.2.

5

6 CHAPTER 2. THE BIG PICTURE

2.2

gamma

Cin Cout

gam

(1,1,1)

Shader groups, layers, and connections

A shader group is an ordered sequence of individual shaders called layers that are executed in
turn. Output parameters of an earlier-executed layer may be connected to an input parameter of
a later-executed layer. This connected network of layers is sometimes called a shader network
or a shader DAG (directed acyclic graph). Of course, it is fine for the shader group to consist of
a single shader layer.

Below is a schematic showing how several shader instances may be connected to form a
shader group.

layer 5: "wood1"

texturemap

name

s

t

Cout

texturemap

name

s

t

Cout

layer 3: "gam1"

gamma

Cin Cout

gam2.2

layer 4: "gam2"

gamma

Cin Cout

gam1.0

rings

grain

wood

Ci
layer 2: "tex2"

layer 1: "tex1"

"rings.tx"

"grain.tx"

And here is sample pseudo-code shows how the above network may be assembled using an API
in the renderer1:

ShaderGroupBegin ()
Shader ("texturemap", /* shader name */

"tex1", /* layer name */
"string name", "rings.tx") /* instance variable */

Shader ("texturemap", "tex2", "string name", "grain.tx")
Shader ("gamma", "gam1", "float gam", 2.2)
Shader ("gamma", "gam2", "float gam", 1)
Shader ("wood", "wood1")
ConnectShaders ("tex1", /* layer name A */

"Cout", /* an output parameter of A */
"gam1", /* layer name B */

1This document does not dictate a specific renderer API for declaring shader instances, groups, and connections;
the code above is just an example of how it might be done.

Open Shading Language Specification

7

"Cin") /* Connect this layer of B to A’s Cout */
ConnectShaders ("tex2", "Cout", "gam2", "Cin")
ConnectShaders ("gam1", "Cout", "wood1", "rings")
ConnectShaders ("gam2", "Cout", "wood1", "grain")
ShaderGroupEnd ()

Or, expressed as serialized text (as detailed in Chapter 9):

param string name "rings.tx" ;
shader "texturemap" "tex1" ;
param string name "grain.tx" ;
shader "texturemap" "tex2" ;
param float gam 2.2 ;
shader "gamma" "gam1" ;
param float gam 1.0 ;
shader "gamma" "gam2" ;
shader "wood" "wood1" ;
connect tex1.Cout gam1.Cin ;
connect tex2.Cout gam2.Cin ;
connect gam1.Cout wood1.rings ;
connect gam2.Cout wood1.grain ;

The rules for which data types may be connected are generally the same as the rules deter-
mining which variables may be assigned to each other in OSL source code:

• source and dest are the same data type.

• source and dest are both triples (color, point, vector, or normal), even if they are
not the same kind of triple.

• source is an int and dest is a float.

• source is a float or int and dest is a triple (the scalar value will be replicated for all
three components of the triple).

• source is a single component of an aggregate type (e.g. one channel of a color) and
dest is a float (or vice versa).

Geometric primitives

The scene consists of primarily of geometric primitives, light sources, and cameras.
Geometric primitives are shapes such as NURBS, subdivision surfaces, polygons, and curves.

The exact set of supported primitives may vary from renderer to renderer.
Each geometric primitive carries around a set of named primitive variables (also sometimes

called interpolated values or user data). Nearly all shape types will have, among their primitive
variables, control point positions that, when interpolated, actually designate the shape. Some
shapes will also allow the specification of normals or other shape-specific data. Arbitrary user
data may also be attached to a shape as primitive variables. Primitive variables may be inter-
polated in a variety of ways: one constant value per primitive, one constant value per face, or
per-vertex values that are interpolated across faces in various ways.

Open Shading Language Specification

8 CHAPTER 2. THE BIG PICTURE

If a shader input parameter’s name and type match the name and type of a primitive variable
on the object (and that input parameters is not already explicitly connected to another layer’s
output), the interpolated primitive variable will override the instance value or default.

Attribute state and shader assignments

Every geometric primitive has a collection of attributes (sometimes called the graphics state)
that includes its transformation matrix, the list of which lights illuminate it, whether it is one-
sided or two-sided, shader assignments, etc. There may also be a long list of renderer-specific
or user-designated attributes associated with each object. A particular attribute state may be
shared among many geometric primitives.

The attribute state also includes shader assignments — the shaders or shader groups for
each of several shader uses, such as surface shaders that designate how light reflects or emits
from each point on a shape, displacement shaders that can add fine detail to the shape on a
point-by-point basis, and volume shaders that describe how light is scattered within a region of
space. A particular renderer may have additional shader types that it supports.

Shader execution state: parameter binding and global variables

When the body of code of an individual shader is about to execute, all its parameters are bound
— that is, take on specific values (from connections from other layers, interpolated primitive
variables, instance values, or defaults, in that order).

Certain state about the position on the surface where the shading is being run is stored in
so-called global variables. This includes such useful data as the 3D coordinates of the point
being shaded, the surface normal and tangents at that point, etc.

Additionally, the shader may query other information about other elements of the attribute
state attached to the primitive, and information about the renderer as a whole (rendering options,
etc.).

Surface and volume shaders compute closures

Surface shaders (and volume shaders) do not by themselves compute the final color of light
emanating from the surface (or along a volume). Rather, they compute a closure, which is
a symbolic representation describing the appearance of the surface, that may be more fully
evaluated later. This is in effect a parameterized formula, in which some inputs have definite
numeric values, but others may depend on quantities not yet known (such as the direction from
which the surface is being viewed, and the amount of light from each source that is arriving at
the surface).

For example, a surface shader may compute its result like this:

color paint = texture ("file.tx", u, v);
Ci = paint * diffuse (N);

In this example, the variable paint will take on a specific numeric value (by looking up from
a texture map). But the diffuse() function returns a closure color, not a definite numeric
color. The output variable Ci that represents the appearance of the surface is also a closure

Open Shading Language Specification

9

color, whose numeric value is not known yet, except that it will be the product of paint and a
Lambertian reflectance.

closure color
global state variables

primitive variables

instance variables

textures

shader code

executes
(0.5,0.1,0.8) * lambert((0.4,0.3,0.5))

The closures output by surface and volume shaders can do a number of interesting things
that a mere number cannot:

• Evaluate: given input and output light directions, compute the proportion of light propa-
gating from input to output.

• Sample: given just an input (or output) direction, choose a scattering direction with a
probability distribution that is proportional to the amount of light that will end up going
in various directions.

• Integrate: given all lights and a view direction, compute the total amount of light leaving
the surface in the view direction.

• Recompute: given changes only to lights (or only to one light), recompute the integrated
result without recomputing other lights or any of the calculations that went into assem-
bling constants in the closure (such as texture lookups, noise functions, etc.).

Integrators

The renderer contains a number of integrators (selectable via the renderer’s API) which will
combine the color closures computed by surfaces and volumes with the light sources and view-
dependent information, to yield the amount of light visible to the camera.

visible from camera

from surface shader

lights

global variables
view−dependent

color closure

integrator final color

Units

You can tell the renderer (through a global option) what units the scene is using for distance
and time. Then the shader has a built-in function called transformu() that works a lot like
transform(), but instead of converting between coordinate systems, it converts among units.
For example,

displacement bumpy (float bumpdist = 1,
string bumpunits = "cm")

{

Open Shading Language Specification

10 CHAPTER 2. THE BIG PICTURE

// convert bumpdist to common units
float spacing = transformu (bumpunits, "common", bumpdist);
float n = noise (P / spacing);
displace (n);

}

So you can write a shader to achieve some effect in real world units, and that shader is
totally reusable on another show that used different modeling units.

It knows all the standard names like "cm", "in", "km", etc., and can convert among any of
those, as well as between named coordinate systems. For example,

float x = transformu ("object", "mm", 1);

now x is the number of millimeters per unit of "object" space on that primitive.

Open Shading Language Specification

3 Lexical structure

3.1 Characters

Source code for Open Shading Language consists of ASCII or UTF-8 characters.
The characters for space, tab, carriage return, and linefeed are collectively referred to as

whitespace. Whitespace characters delimit identifiers, keywords, or other symbols, but other
than that have no syntactic meaning. Multiple whitespace characters in a row are equivalent to
a single whitespace character.

Source code may be split into multiple lines, separated by end-of-line markers (carriage
return and/or linefeed). Lines may be of any length and end-of-line markers carry no signif-
icant difference from other whitespace, except that they terminate // comments and delimit
preprocessor directives.

3.2 Identifiers

Identifiers are the names of variables, parameters, functions, and shaders. In Open Shading
Language, identifiers consist of one or more characters. The first character may be a letter (A-Z
or a-z) or underscore (_), and subsequent characters may be letters, underscore, or numerals
(0-9). Examples of valid and invalid identifiers are:

opacity // valid
Long_name42 // valid - letters, underscores, numbers are ok
_foo // valid - ok to start with an underscore

2smart // invalid - starts with a numeral
bigbuck$ // invalid - $ is an illegal character

3.3 Comments

Comments are text that are for the human reader of programs, and are ignored entirely by the
Open Shading Language compiler. Just like in C++, there are two ways to designate comments
in Open Shading Language:

1. Any text enclosed by /* and */ will be considered a comment, even if the comment spans
several lines.

11

12 CHAPTER 3. LEXICAL STRUCTURE

/* this is a comment */

/* this is also
a comment, spanning
several lines */

2. Any text following //, up to the end of the current line, will be considered a comment.

// This is a comment
a = 3; // another comment

3.4 Keywords and reserved words

There are two sets of names that you may not use as identifiers: keywords and reserved words.
The following are keywords that have special meaning in Open Shading Language:

and break closure color continue do else emit float for if illuminance
illuminate int matrix normal not or output point public return string
struct vector void while

The following are reserved words that currently have no special meaning in Open Shading
Language, but we reserve them for possible future use, or because they are confusingly similar
to keywords in related programming languages:

bool case catch char class const delete default double enum extern
false friend goto inline long new operator private protected short
signed sizeof static switch template this throw true try typedef uniform
union unsigned varying virtual volatile

3.5 Preprocessor

Shader source code is passed through a standard C preprocessor as a first step in parsing.
Preprocessor directives are designated by a hash mark (#) as the first character on a line,

followed by a preprocessor directive name. Whitespace may optionally appear between the
hash and the directive name.

Open Shading Language compilers support the full complement of C/C++ preprocessing
directives, including:

#define
#undef
#if
#ifdef
#ifndef
#elif
#else
#endif
#include
#pragma once

Open Shading Language Specification

3.5. PREPROCESSOR 13

Additionally, the following preprocessor symbols will already be defined by the compiler:
OSL VERSION MAJOR Major version (e.g., 1)
OSL VERSION MINOR Minor version (e.g., 9)
OSL VERSION PATCH Patch version (e.g., 3)
OSL VERSION Combined version number = 10000*major + 100*minor +

patch (e.g., 10903 for version 1.9.3)

Open Shading Language Specification

14 CHAPTER 3. LEXICAL STRUCTURE

Open Shading Language Specification

4 Gross syntax, shader types,
parameters

The overall structure of a shader is as follows:

optional-function-or-struct-declarations

shader-type shader-name (optional-parameters)
{

statements

}

Note that statements may include function or structure definitions, local variable declara-
tions, or public methods, as well as ordinary execution instructions (such as assignments, etc.).

4.1 Shader types

Shader types include the following: surface, displacement, light, volume, and generic
shader. Some operations may only be performed from within certain types of shaders (e.g.,
one may only call displace() or alter P in a displacement shader), and some global variables
may only be accessed from within certain types of shaders (e.g., dPdu is not defined inside a
volume shader).

Following are brief descriptions of the basic types of shaders:

surface shaders

Surface shaders determine the basic material properties of a surface and how it reacts to light.
They are responsible for computing a closure color that describes the material, and option-
ally setting other user-defined output variables. They may not alter the position of the surface.

Surface shaders are written as if they describe the behavior of a single point on the primitive,
and the renderer will choose the positions surface at which the shader must be evaluated.

Surface shaders also are used to describe emissive objects, i.e., light sources. OSL does not
need a separate shader type to describe lights.

15

16 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS

displacement shaders

Displacement shaders alter the position and shading normal (or, optionally, just the shading
normal) to make a piece of geometry appear deformed, wrinkled, or bumpy. They are the only
kind of shader that is allowed to alter a primitive’s position.

volume shaders

Volume shaders describe how a participating medium (air, smoke, glass, etc.) reacts to light
and affects the appearance of objects on the other side of the medium. They are similar to
surface shaders, except that they may be called from positions that do not lie upon (and are
not necessarily associated with) any particular primitive.

shader generic shaders

Generic shaders are used for utility code, generic routines that may be called as individual layers
in a shader group. Generic shaders need not specify a shader type, and therefore may be reused
from inside surface, displacement, or volume shader groups. But as a result, they may not
contain any functionality that cannot be performed from inside all shader types (for example,
they may not alter P, which can only be done from within a displacement shader).

4.2 Shader parameters

An individual shader has (optionally) many parameters whose values may be set in a number of
ways so that a single shader may have different behaviors or appearances when used on different
objects.

4.2.1 Shader parameter syntax

Shader parameters are specified in the shader declaration, in parentheses after the shader’s name.
This is much like the parameters to an OSL function (or a function in C or similar languages),
except that shader parameters must have an initializer, giving a default value for the parameter.
Shader parameter default initializers may be expressions (i.e., may be computed rather than
restricted to numeric constants), and are evaluated in the order that the parameters are declared,
and may include references to previously-declared parameters. Formally, the grammar for a
simple parameter declaration looks like this:

type parametername = default-expression

where type is one of the data types described in Chapter 5, parametername is the name of the
parameter, and default-expression is a valid expression (see Section 6.2). Multiple parameters
are simply separated by commas:

type1 parameter1 = expr1 , type2 parameter2 = expr2 , ...

Fixed-length, one-dimensional array parameters are declared as follows:

type parametername [array-length] = { expr0 , expr1 ... }

Open Shading Language Specification

4.2. SHADER PARAMETERS 17

where array-length is a positive integer constant giving the length of the array, and the initializer
is a series of initializing expressions listed between curly braces. The first initializing expres-
sion provides the initializer for the first element of the array, the second expression provides
the initializer for the second element of the array, and so on. If the number of initializing ex-
pressions is less than the length of the array, any additional array elements will have undefined
values.

Arrays may also be declared without a set length:

type parametername [] = { expr0 , expr1 ... }

where no array length is found between the square brackets. This indicates that the array’s
length will be determined based on whatever is passed in — a connection from the output of
another shader in the group (take on the length of that output), an instance value (take on the
length specified by the declaration of the instance value), or a primitive variable (length deter-
mined by its declaration on the primitive). If no instance value, primitive value, or connection
is supplied, then the number of initializing expressions will determine the length, as well as the
default values, of the array.

Structure parameters are also straightforward to declare:

structure-type parametername = { expr0 , expr1 ... }

where structure-type is the name of a previously-declared struct type, and the expr initializers
correspond to each respective field within the structure. An initializer of appropriate type is
required for every field of the structure.

4.2.2 Shader output parameters

Shader parameters are, by default, read-only in the body of the shader. However, special output
parameters may be altered by execution of the shader. Parameters may be designated outputs
by use of the output keyword immediately prior to the type declaration of the parameter:

output type parametername = expr

(Output parameters may be arrays and structures, but we will omit spelling out the obvious
syntax here.)

Output parameters may be connected to inputs of later-run shader layers in the shader group,
may be queried by later-run shaders in the group via message passing (i.e., getmessage()
calls), or used by the renderer as an output image channel (in a manner described through the
renderer’s API).

4.2.3 Shader parameter example

Here is an example of a shader declaration, with several parameters:

surface wood (
/* Simple params with constant initializers */

float Kd = 0.5,
color woodcolor = color (.7, .5, .3),
string texturename = "wood.tx",

/* Computed from an earlier parameter */

Open Shading Language Specification

18 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS

color ringcolor = 0.25 * woodcolor,
/* Fixed-length array */

color paintcolors[3] = { color(0,.25,0.7), color(1,1,1),
color(0.75,0.5,0.2) },

/* variable-length array */
int pattern[] = { 2, 4, 2, 1 },

/* output parameter */
output color Cunlit = 0

)
{

...
}

4.2.4 How shader parameters get their values

Shader parameters get their values in the following manner, in order of decreasing priority:

• If the parameter has been designated by the renderer to be connected to an output param-
eter of a previously-executed shader layer within the shader group, that is the value it will
get.

• If the parameter matches the name and type of a per-primitive, per-face, or per-vertex
primitive variable on the particular piece of geometry being shaded, the parameter’s value
will be computed by interpolating the primitive variable for each position that must be
shaded.

• If there is no connection or primitive variable, the parameter may will take on an in-
stance value, if that parameter was given an explicit per-instance value at the time that
the renderer referenced the shader (associating it with an object or set of objects).

• If none of these overrides is present, the parameter’s value will be determined by execut-
ing the parameter initialization code in the shader.

This triage is performed per parameter, in order of declaration. So, for example, in the code
sample above where the default value for ringcolor is a scaled version of woodcolor, this
relationship would hold whether woodcolor was the default, an instance value, an interpolated
primitive value, or was connected to another layer’s output. Unless ringcolor itself was given
an instance, primitive, or connection value, in which case that’s what would be used.

4.3 Shader metadata

A shader may optionally include metadata (data about the shader, as opposed to data used by
the shader). Metadata may be used to annotate the shader or any of its individual parameters
with additional hints or information that will be compiled into the shader and may be queried
by applications. A common use of metadata is to specify user interface hints about shader
parameters — for example, that a particular parameter should only take on integer values, should
have an on/off checkbox, is intended to be a filename, etc.

Open Shading Language Specification

4.3. SHADER METADATA 19

Metadata is specified inside double brackets [[and]] enclosing a comma-separated list
of metadata items. Each metadatum looks like a parameter declaration — having a data type,
name, and initializer. However, metadata may only be simple types or arrays of simple types
(not structs or closures) and their value initializers must be numeric or string constants (not
computed expressions).

Metadata about the shader as a whole is placed between the shader name and the parameter
list. Metadata about shader parameters are placed immediately after the parameter’s initial-
izing expression, but before the comma or closing parentheses that terminates the parameter
description.

Below is an example shader declaration showing the use of shader and parameter metadata:

surface wood
[[string help = "Realistic wood shader"]]

(
float Kd = 0.5

[[string help = "Diffuse reflectivity",
float min = 0, float max = 1]] ,

color woodcolor = color (.7, .5, .3)
[[string help = "Base color of the wood"]],

color ringcolor = 0.25 * woodcolor
[[string help = "Color of the dark rings"]],

string texturename = "wood.tx"
[[string help = "Texture map for the grain",

string widget = "filename"]],
int pattern = 0

[[string widget = "mapper",
string options = "oak:0|elm:1|walnut:2"]]

)
{

...
}

The metadata are not semantically meaningful; that is, the metadata does not affect the
actual execution of the shader. Most metadata exist only to be embedded in the compiled shader
and able to be queried by other applications, such as to construct user interfaces for shader
assignment that allow usage tips, appropriate kinds of widgets for setting each parameter, etc.

The choice of metadata and their meaning is completely up to the shader writer and/or
modeling system. However, we propose some conventions below. These conventions are not
intended to be comprehensive, nor to meet all your needs — merely to establish a common
nomenclature for the most common metadata uses.

The use of metadata is entirely optional on the part of the shader writer, and any application
that queries shader metadata is free to honor or ignore any metadata it finds.

string label

A short label to be displayed in the UI for this parameter. If not present, the parameter
name itself should be used as the widget label.

Open Shading Language Specification

20 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS

string help

Help text that describes the purpose and use of the shader or parameter.

string page

Helps to group related widgets by “page.”

string widget

The type of widget that should be used to adjust this parameter. Suggested widget types:

"number"

Provide a slider and/or numeric input. This is the default widget type for float or
int parameters. Numeric inputs also may be influenced by the following metadata:
"min", "max", "sensitivity", "digits", "slider", "slidermin", "slidermax",
"slidercenter", "sliderexponent".

"string"

Provide a text entry widget. This is the default widget type for string parameters.

"boolean"

Provide a pop-up menu with “Yes” and “No” options. Works on strings or numbers.
With strings, “Yes” and “No” values are used, with numbers, 0 and 1 are used.

"checkBox"

A boolean widget displayed as a checkbox. Works on strings or numbers. With
strings, “Yes” and “No” values are used, with numbers, 0 and 1 are used.

"popup"

A pop-up menu of literal choices. This widget further requires parameter metadata
"options" (a string listing the supported menu items, delimited by the ‘|’ char-
acter), and optionally "editable" (an integer, which if nonzero means the widget
should allow the text field should be directly editable). For example:

string wrap = "default"
[[string widget = "popup",

string options = "default|black|clamp|periodic|mirror"]]

"mapper"

A pop-up with associative choices (an enumerated type, if the values are integers).
This widget further requires parameter metadata "options", a ‘|’-delimited string
with “key:value” pairs. For example:

int pattern = 0
[[string widget = "mapper",

string options = "oak:0|elm:1|walnut:2"]]

Open Shading Language Specification

4.3. SHADER METADATA 21

"filename"

A file selection dialog.

"null"

A hidden widget.

float min
float max

int min
int max

The minimum and/or maximum value that the parameter may take on.

float sensitivity
int sensitivity

The precision or step size for incrementing or decrementing the value (within the appro-
priate min/max range).

int digits

The number of digits to show (-1 for full precision).

int slider

If nonzero, enables display of a slider sub-widget. This also respects the following addi-
tional metadata that control the slider specifically: "slidermin" (minimum value for the
slider, "slidermax" (maximum value for the slider), "slidercenter" (origin value for
the slider), "sliderexponent" (nonlinear slider options).

string URL

Provides a URL for full documentation of the shader or parameter.

string units

Gives the assumed units, if any, for the parameter (e.g., "cm", "sec", "degrees"). The
compiler or renderer may issue a warning if it detects that this assumption is being vi-
olated (for example, the compiler can warn if a "degrees" variable is passed as the
argument to cos).

Open Shading Language Specification

22 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS

4.4 Public methods

Ordinary (non-public) functions inside a shader may be called only from within the shader; they
do not generate entry points that the renderer is aware of.

A public method is a function that may be directly called by the renderer. Only top-level
local functions of a shader — that is, declared within the braces that define the local scope of
the shader, but not within any other such function — may be public methods. A function may
be designated a public method by using the public keyword immediately before the function
declaration:

shader-type shader-name (params)
{

public return-type function-name (optional-parameters)
{

statements
}

...
}

Open Shading Language Specification

5 Data types

Open Shading Language provides several built-in simple data types for performing computa-
tions inside your shader:

int Integer data

float Scalar floating-point data (numbers)

point
vector
normal

Three-dimensional positions, directions, and surface orientations

color Spectral reflectivities and light energy values

matrix 4×4 transformation matrices

string Character strings (such as filenames)

void Indicates functions that do not return a value

In addition, you may create arrays and structures (much like C), and Open Shading Lan-
guage has a new type of data structure called a closure.

The remainder of this chapter will describe the simple and aggregate data types available in
Open Shading Language.

5.1 int

The basic type for discrete numeric values is int. The size of the int type is renderer-
dependent, but is guaranteed to be at least 32 bits.

Integer constants are constructed the same way as in C. The following are examples of int
constants: 1, -32, etc. Integer constants may be specified as hexidecimal, for example: 0x01cf.

Unlike C, no unsigned, bool, char, short, or long types are supplied. This is to simplify the
process of writing shaders (as well as implementing shading systems).

The following operators may be used with int values (in order of decreasing precedence,
with each box holding operators of the same precedence):

23

24 CHAPTER 5. DATA TYPES

operation result
int ++ int post-increment by 1
int -- int post-decrement by 1
++ int int pre-increment by 1
-- int int pre-decrement by 1
- int int unary negation
˜ int int bitwise complement (1 and 0 bits flipped)
! int int boolean ‘not’ (1 if operand is zero, otherwise 0)
int * int int multiplication
int / int int division
int % int int modulus
int + int int addition
int - int int subtraction
int << int int shift left
int >> int int shift right
int < int int 1 if the first value is less than the second, else 0
int <= int int 1 if the first value is less or equal to the second, else 0
int > int int 1 if the first value is greater than the second, else 0
int >= int int 1 if the first value is greater than or equal to the second, else 0
int == int int 1 if the two values are equal, else 0
int != int int 1 if the two values are different, else 0
int & int int bitwise and
int ˆ int int bitwise exclusive or
int | int int bitwise or
int && int int boolean and (1 if both operands are nonzero, otherwise 0)
int || int int boolean or (1 if either operand is nonzero, otherwise 0)

Note that the not, and, and or keywords are synonyms for !, &&, and ||, respectively.

5.2 float

The basic type for scalar floating-point numeric values is float. The size of the float type is
renderer-dependent, but is guaranteed to be at least IEEE 32-bit float (the standard C float data
type). Individual renderer implementations may choose to implement float with even more
precision (such as using the C double as the underlying representation).

Floating-point constants are constructed the same way as in C. The following are examples
of float constants: 1.0, 2.48, -4.3e2.

An int may be used in place of a float when used with any valid float operator. In such
cases, the int will be promoted to a float and the resulting expression will be float. An int

Open Shading Language Specification

5.3. COLOR 25

may also be passed to a function that expects a float parameters, with the int automatically
promoted to float.

The following operators may be used with float values (in order of decreasing precedence,
with each box holding operators of the same precedence):

operation result
float ++ float post-increment by 1
float -- float post-decrement by 1
++ float float pre-increment by 1
-- float float pre-decrement by 1
- float float unary negation
float * float float multiplication
float / float float division
float + float float addition
float - float float subtraction
float < float int 1 if the first value is less than the second, else 0
float <= float int 1 if the first value is less or equal to the second, else 0
float > float int 1 if the first value is greater than the second, else 0
float >= float int 1 if the first value is greater than or equal to the second,

else 0
float == float int 1 if the two values are equal, else 0
float != float int 1 if the two values are different, else 0

5.3 color

The color type is used to represent 3-component (RGB) spectral reflectivities and light ener-
gies. You can assemble a color out of three floats, either representing an RGB triple or some
other color space known to the renderer, as well as from a single float (replicated for all three
channels). Following are some examples:

color (0, 0, 0) // black
color ("rgb", .75, .5, .5) // pinkish
color ("hsv", .2, .5, .63) // specify in "hsv" space
color (0.5) // same as color (0.5, 0.5, 0.5)

All these expressions above return colors in "rgb" space. Even the third example returns a
color in "rgb" space — specifically, the RGB value of the color that is equivalent to hue 0.2,
saturation 0.5, and value 0.63. In other words, when assembling a color from components given
relative to a specific color space in this manner, there is an implied transformation to "rgb"
space. Table 5.1 lists the built-in color spaces.

Colors may be assigned another color or a float value (which sets all three components to
the value). For example:

color C;

Open Shading Language Specification

26 CHAPTER 5. DATA TYPES

Table 5.1: Names of color spaces.
"rgb" The coordinate system that all colors start out in, and in which the renderer

expects to find colors that are set by your shader.
"hsv" hue, saturation, and value.
"hsl" hue, saturation, and lightness.
"YIQ" the color space used for the NTSC television standard.
"XYZ" CIE XYZ coordinates.
"xyY" CIE xyY coordinates.

C = color (0, 0.3, 0.3);
C = 0.5; // same as C = color (0.5, 0.5, 0.5)

Colors can have their individual components examined and set using the [] array access
notation. For example:

color C;
float g = C[1]; // get the green component
C[0] = 0.5; // set the red component

Components 0, 1, and 2 are red, green, and blue, respectively. It is an error to access a color
component with an index outside the [0...2] range.

Color variables may also have their components referenced using “named components”
that look like accessing structure fields named r, g, and b, as synonyms for [0], [1], and [2],
respectively:

float green = C.g; // get the green component
C.r = 0.5; // set the red component

The following operators may be used with color values (in order of decreasing precedence,
with each box holding operators of the same precedence):

operation result
color [int] float component access
- color color unary negation
color * color color component-wise multiplication
color * float color scaling
float * color color scaling
color / color color component-wise division
color / float color scaling
float / color color scaling
color + color color component-wise addition
color - color color component-wise subtraction
color == color int 1 if the two values are equal, else 0
color != color int 1 if the two values are different, else 0

All of the binary operators may combine a scalar value (float or int) with a color, treat-
ing the scalar if it were a color with three identical components.

Open Shading Language Specification

5.4. POINT-LIKE TYPES: POINT, VECTOR, NORMAL 27

5.4 Point-like types: point, vector, normal

Points, vectors, and normals are similar data types with identical structures but subtly different
semantics. We will frequently refer to them collectively as the “point-like” data types when
making statements that apply to all three types.

A point is a position in 3D space. A vector has a length and direction, but does not
exist in a particular location. A normal is a special type of vector that is perpendicular to a
surface, and thus describes the surface’s orientation. Such a perpendicular vector uses different
transformation rules than ordinary vectors, as we will describe below.

All of these point-like types are internally represented by three floating-point numbers that
uniquely describe a position or direction relative to the three axes of some coordinate system.

All points, vectors, and normals are described relative to some coordinate system. All
data provided to a shader (surface information, graphics state, parameters, and vertex data) are
relative to one particular coordinate system that we call the "common" coordinate system. The
"common" coordinate system is one that is convenient for the renderer’s shading calculations.

You can “assemble” a point-like type out of three floats using a constructor:

point (0, 2.3, 1)
vector (a, b, c)
normal (0, 0, 1)

These expressions are interpreted as a point, vector, and normal whose three components are
the floats given, relative to "common" space .

As with colors, you may also specify the coordinates relative to some other coordinate
system:

Q = point ("object", 0, 0, 0);

This example assigns to Q the point at the origin of "object" space. However, this state-
ment does not set the components of Q to (0,0,0)! Rather, Q will contain the "common" space
coordinates of the point that is at the same location as the origin of "object" space. In other
words, the point constructor that specifies a space name implicitly specifies a transformation to
"common" space. This type of constructor also can be used for vectors and normals.

The choice of "common" space is renderer-dependent, though will usually be equivalent to
either "camera" space or "world" space.

Some computations may be easier in a coordinate system other than "common" space.
For example, it is much more convenient to apply a “solid texture” to a moving object in its
"object" space than in "common" space. For these reasons, OSL provides a built-in transform
function that allows you to transform points, vectors, and normals among different coordinate
systems (see Section 7.2). Note, however, that Open Shading Language does not keep track of
which point variables are in which coordinate systems. It is the responsibility of the shader pro-
grammer to keep track of this and ensure that, for example, lighting computations are performed
using quantities in "common" space.

Several coordinate systems are predefined by name, listed in Table 5.2. Additionally, a ren-
derer will probably allow for additional coordinate systems to be named in the scene description,
and these names may also be referenced inside your shader to designate transformations.

Open Shading Language Specification

28 CHAPTER 5. DATA TYPES

Table 5.2: Names of predeclared geometric spaces.
"common" The coordinate system that all spatial values start out in and the one in which

all lighting calculations are carried out. Note that the choice of "common"
space may be different on each renderer.

"object" The local coordinate system of the graphics primitive (sphere, patch, etc.) that
we are shading.

"shader" The local coordinate system active at the time that the shader was instanced.
"world" The world coordinate system designated in the scene.
"camera" The coordinate system with its origin at the center of the camera lens, x-axis

pointing right, y-axis pointing up, and z-axis pointing into the screen.
"screen" The coordinate system of the camera’s image plane (after perspective trans-

formation, if any). Coordinate (0,0) of "screen" space is looking along the
z-axis of "camera" space.

"raster" 2D pixel coordinates, with (0,0) as the upper-left corner of the image and (xres,
yres) as the lower-right corner.

"NDC" 2D Normalized Device Coordinates — like raster space, but normalized so
that x and y both run from 0 to 1 across the whole image, with (0,0) being at
the upper left of the image, and (1,1) being at the lower right.

Point types can have their individual components examined and set using the [] array access
notation. For example:

point P;
float y = P[1]; // get the y component
P[0] = 0.5; // set the x component

Components 0, 1, and 2 are x, y, and z, respectively. It is an error to access a point component
with an index outside the [0...2] range.

Point-like variables may also have their components referenced using “named components”
that look like accessing structure fields named x, y, and z, as synonyms for [0], [1], and [2],
respectively:

float yval = P.y; // get the [1] or y component
P.x = 0.5; // set the [0] or x component

The following operators may be used with point-like values (in order of decreasing prece-
dence, with each box holding operators of the same precedence):

Open Shading Language Specification

5.5. MATRIX 29

operation result
ptype [int] float component access
- ptype vector component-wise unary negation
ptype * ptype ptype component-wise multiplication
float * ptype ptype scaling of all components
ptype * float ptype scaling of all components
ptype / ptype ptype component-wise division
ptype / float ptype division of all components
float / ptype ptype division by all components
ptype + ptype ptype component-wise addition
ptype - ptype vector component-wise subtraction
ptype == ptype int 1 if the two values are equal, else 0
ptype != ptype int 1 if the two values are different, else 0

The generic ptype is listed in places where any of point, vector, or normal may be used.
All of the binary operators may combine a scalar value (float or int) with a point-like

type, treating the scalar if it were point-like with three identical components.

5.5 matrix

Open Shading Language has a matrix type that represents the transformation matrix required
to transform points and vectors between one coordinate system and another. Matrices are rep-
resented internally by 16 floats (a 4×4 homogeneous transformation matrix).

A matrix can be constructed from a single float or 16 floats. For example:

matrix zero = 0; // makes a matrix with all 0 components
matrix ident = 1; // makes the identity matrix

// Construct a matrix from 16 floats
matrix m = matrix (m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);

Assigning a single floating-point number x to a matrix will result in a matrix with diagonal
components all being x and other components being zero (i.e., x times the identity matrix).
Constructing a matrix with 16 floats will create the matrix whose components are those floats,
in row-major order.

Similar to point-like types, a matrix may be constructed in reference to a named space:

// Construct matrices relative to something other than "common"
matrix q = matrix ("shader", 1);
matrix m = matrix ("world", m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);

The first form creates the matrix that transforms points from "shader" space to "common"
space. Transforming points by this matrix is identical to calling transform("shader", "common",

Open Shading Language Specification

30 CHAPTER 5. DATA TYPES

...). The second form prepends the current-to-world transformation matrix onto the 4×4 ma-
trix with components m0,0...m3,3. Note that although we have used "shader" and "world"
space in our examples, any named space is acceptable.

A matrix may also be constructed from the names of two coordinate systems, yielding the
matrix that transforms coordinates from the first named space to the second named space:

matrix m = matrix ("object", "world");

The example returns the object-to-world transformation matrix.
Matrix variables can be tested for equality and inequality with the == and != boolean op-

erators. Also, the * operator between matrices denotes matrix multiplication, while m1 / m2
denotes multiplying m1 by the inverse of matrix m2. Thus, a matrix can be inverted by writing
1/m. In addition, some functions will accept matrix variables as arguments, as described in
Section 7.

Individual components of a matrix variable may be set or accessed using array notation, for
example,

matrix M;
float x = M[row][col];
M[row][col] = 1;

Valid component indices are integers on [0...3]. It is an error to access a matrix component
with either a row or column outside this range.

The following operators may be used with matrices (in order of decreasing precedence, with
each box holding operators of the same precedence):

operation result
matrix [int][int] float component access (row, column)
- matrix matrix unary negation
matrix * matrix matrix matrix multiplication
matrix * float matrix component-wise scaling
float * matrix matrix component-wise scaling
matrix / matrix matrix multiply the first matrix by the inverse of the second
matrix / float matrix component-wise division
float / matrix matrix multiply the float by the inverse of the matrix
matrix == matrix int 1 if the two values are equal, else 0
matrix != matrix int 1 if the two values are different, else 0

5.6 string

The string type may hold character strings. The main application of strings is to provide the
names of files where textures may be found. Strings can be compared using == and !=.

String constants are denoted by surrounding the characters with double quotes, as in "I am
a string literal". As in C programs, string literals may contain escape sequences such as
\n (newline), \r (carriage return), \t (tab), \" (double quote), \\ (backslash).

Open Shading Language Specification

5.7. VOID 31

Two quote-quoted string literals that are separated only by whitespace (spaces, tabs, or
newlines) will be automatically concatenated into a single string literal. In other words,

"foo" "bar"

is exactly equivalent to "foobar".

5.7 void

The void type is used to designate a function that does not return a value. No variable may
have type void.

5.8 Arrays

Arrays of any of the basic types are supported, provided that they are 1D and statically sized,
using the usual syntax for C-like languages:

float d[10]; // Declare an uninitialized array
float c[3] = { 0.1, 0.2, 3.14 }; // Initialize the array

float f = c[1]; // Access one element

The built-in function arraylength() returns the number of elements in an array. For ex-
ample:

float c[3];
int clen = arraylength(c); // should return 3

There are two circumstances when arrays do not need to have a declared length — an array
parameter to a function, and a shader parameter that is an array. This is indicated by empty
array brackets, as shown in the following example:

float sum (float x[])
{

float s = 0;
for (int i = 0; i < arraylength(x); ++i)

s += x[i];
return s;

}

It is allowed in OSL to copy an entire array at once using the = operator, provided that the
arrays contain elements of the same type and that the destination array is at least as long as the
source array. For example:

float array[4], anotherarray[4];
...
anotherarray = array;

Open Shading Language Specification

32 CHAPTER 5. DATA TYPES

5.9 Structures

Structures are used to group several fields of potentially different types into a single object that
can be referred to by name. You may then use the structure type name to declare structure
variables as you would for any of the built-in types. Structure elements are accessed using the
‘dot’ operator. The syntax for declaring and using structures is similar to C or C++:

struct RGBA { // Define a structure type
color rgb;
float alpha;

};

RGBA col; // Declare a structure
r.rgb = color (1, 0, 0); // Assign to one field
color c = r.rgb; // Read from a structure field

RGBA b = { color(.1,.2,.3), 1 }; // Member-by-member initialization

You can use “constructor expressions” for a your struct types much like you can construct
built-in types like color or point:

struct name (first member value, ...)

For example,

RGBA c = RGBA(col,alpha); // Constructor syntax

RGBA add (RGBA a, RGBA b)
{

return RGBA (a.rgb+b.rgb, a.a+b.a); // return expression
}

// pass constructor expression as a parameter:
RGBA d = add (c, RGBA(color(.3,.4,.5), 0));

You may also use the compound initializer list syntax to construct a type when it can be
deduced from context which compound type is required. For example, this is equivalent to the
preceding example:

RGBA c = {col,alpha}; // deduce by what is being assigned to

RGBA add (RGBA a, RGBA b)
{

return { a.rgb+b.rgb, a.a+b.a }; // deduce by func return type
}

RGBA d = add (c, {{.3,.4,.5}, 0}); // deduce by expected arg type

It is permitted to have a structure field that is an array, as well as to have an array of struc-
tures. But it is not currently permitted to “nest” arrays (that is, to have an array of structs which
contain members that are arrays).

Open Shading Language Specification

5.10. CLOSURES 33

struct A {
color a;
float b[4]; // Ok: struct may contain an array

};

RGBA vals[4]; // Ok: Array of structures
vals[0].a = 0;

A d[5]; // NO: Array of structures that contain arrays

5.10 Closures

A closure is an expression or function call that will be stored, along with necessary contextual
information, to be evaluated at a later time.

In general, the type “closure gentype” behaves exactly like a gentype, except that its nu-
meric values may not be examined or used for the duration of the shader’s execution. For
example, a closure color behaves mostly like a color — you can multiply it by a scalar, as-
sign it to a closure color variable, etc. — but you may not assign it to an ordinary color or
examine its individual component’s numeric values.

It is legal to assign 0 to a closure, which is understood to mean setting it to a null closure
(even though in all other circumstances, assigning a float to a closure would not be allowed).

At present, the only type of closure supported by Open Shading Language is the closure
color, and the only allowed operations are those that let you form a linear combination of
closure color’s. Additional closure types and operations are reserved for future use.

Allowable operations on closure color include:

operation result
- closure color closure color unary negation
color * closure color closure color component-wise scaling
closure color * color closure color component-wise scaling
float * closure color closure color scaling
closure color * float closure color scaling
closure color + closure color closure color component-wise addition

Open Shading Language Specification

34 CHAPTER 5. DATA TYPES

Open Shading Language Specification

6 Language Syntax

The body of a shader is a sequence of individual statements. This chapter describes the types of
statements and control-flow patterns in Open Shading Language.

Statements in Open Shading Language include the following types of constructs:

• Scoped statements.

• Variable declarations.

• Expressions.

• Assignments.

• Control flow: if, else, while, do, for, break, continue

• Function declarations.

Scoping

Any place where it is legal to have a statement, it is legal to have multiple statements enclosed
by curly braces { }. This is called a scope. Any variables or functions declared within a scope
are only visible within that scope, and only may be used after their declaration. Variables or
functions that are referenced will always resolve to the matching name in the innermost scope
relative to its use. For example

float a = 1; // Call this the "outer" ’a’
float b = 2;
{

float a = 3; // Call this the "inner" ’a’
float c = 1;
b = a; // b gets 3, because a is resolved to the inner scope

}
b += c; // ERROR -- c was only in the inner scope

6.1 Variable declarations and assignments

6.1.1 Variable declarations

The syntax for declaring a variable in Open Shading Language is:

35

36 CHAPTER 6. LANGUAGE SYNTAX

type name
type name = value

where

• type is one of the basic data types, described earlier.

• name is the name of the variable you are declaring.

• If you wish to initialize your variable an initial value, you may immediately assign it a
value, which may be any valid expression.

You may declare several variables of the same type in a single declaration by separating
multiple variable names by commas:

type name1 , name2 ...
type name1 [= value1] , name2 [= value2] ...

Some examples of variable declarations are

float a; // Declare; current value is undefined
float b = 1; // Declare and assign a constant initializer
float c = a*b; // Computed initializer
float d, e = 2, f; // Declare several variables of the same type

6.1.2 Arrays

Arrays are also supported, declared as follows:

type variablename [arraylen]
type variablename [arraylen] = { init0, init1 ... }

Array variables in Open Shading Language must have a constant length (though function param-
eters and shader parameters may have undetermined length). Some examples of array variable
declarations are:

float d[10]; // Declare an uninitialized array
float c[3] = { 0.1, 0.2, 3.14 }; // Initialize the array

6.1.3 Structures

Structures are used to group several fields of potentially different types into a single object that
can be referred to by name. The syntax for declaring a structure type is:

struct structname {
type1 fieldname1 ;
...
typeN fieldnameN ;

Open Shading Language Specification

6.2. EXPRESSIONS 37

} ;

You may then use the structure type name to declare structure variables as you would for
any of the built-in types:

structname variablename ;
structname variablename = { initializer1 , ... initializerN } ;

If initializers are supplied, each field of the structure will be initialized with the initializer
in the corresponding position, which is expected to be of the appropriate type.

Structure elements are accessed in the same way as other C-like languages, using the ‘dot’
operator:

variablename. fieldname

Examples of declaration and use of structures:

struct ray {
point pos;
vector dir;

};

ray r; // Declare a structure
ray s = { point(0,0,0), vector(0,0,1) }; // declare and initialize
r.pos = point (1, 0, 0); // Assign to one field

It is permitted to have a structure field that is an array, as well as to have an array of struc-
tures. But it is not permitted for one structure to have a field that is another structure.

Please refer to Section 5.9 for more information on using struct.

6.2 Expressions

The expressions available in Open Shading Language include the following:

• Constants: integer (e.g., 1, 42), floating-point (e.g. 1.0, 3, -2.35e4), or string literals
(e.g., "hello")

• point, vector, normal, or matrix constructors, for example:

color (1, 0.75, 0.5)
point ("object", 1, 2, 3)

If all the arguments to a constructor are themselves constants, the constructed point is
treated like a constant and has no runtime cost. That is, color(1,2,3) is treated as a
single constant entity, not assembled bit by bit at runtime.

• Variable or parameter references

Open Shading Language Specification

38 CHAPTER 6. LANGUAGE SYNTAX

• An individual element of an array (using [])

• An individual component of a color, point, vector, normal (using []), or of a matrix
(using [][])

• prefix and postfix increment and decrement operators:

varref ++ (post-increment)
varref -- (post-decrement)
++ varref (pre-increment)
-- varref (pre-decrement)

The post-increment and post-decrement (e.g., a++) returns the old value, then increments
or decrements the variable; the pre-increment and pre-decrement (++a) will first incre-
ment or decrement the variable, then return the new value.

• Unary and binary arithmetic operators on other expressions:

- expr (negation)
˜ expr (bitwise complement)
expr * expr (multiplication)
expr / expr (division)
expr + expr (addition)
expr - expr (subtraction)
expr % expr (integer modulus)
expr << expr (integer shift left)
expr >> expr (integer shift right)
expr & expr (bitwise and)
expr | expr (bitwise or)
expr ˆ expr (bitwise exclusive or)

The operators +, -, *, /, and the unary - (negation) may be used on most of the nu-
meric types. For multicomponent types (color, point, vector, normal, matrix), these
operators combine their arguments on a component-by-component basis. The only op-
erators that may be applied to the matrix type are * and /, which respectively denote
matrix-matrix multiplication and matrix multiplication by the inverse of another matrix.

The integer and bit-wise operators %, <<, >>, &, |, ˆ, and ˜ may only be used with expres-
sions of type int.

For details on which operators are allowed, please consult the operator tables for each
individual type in Chapter 5.

• Relational operators (all lower precedence than the arithmetic operators):

Open Shading Language Specification

6.2. EXPRESSIONS 39

expr == expr (equal to)
expr != expr (not equal to)
expr < expr (less then)
expr <= expr (less than or equal to)
expr > expr (greater than)
expr >= expr (greater than or equal)

The == and != operators may be performed between any two values of equal type, and are
performed component-by-component for multi-component types. The <, <=, >, >= may
not be used to compare multi-component types.

An int expression may be compared to a float (and is treated as if they are both float).
A float expression may be compared to a multi-component type (and is treated as a
multi-component type as if constructed from a single float).

Relation comparisons produce Boolean (true/false) values. These are implemented as
int values, 0 if false and 1 if true.

• Logical unary and binary operators:

! expr

expr1 && expr2

expr1 || expr2

Note that the not, and, and or keywords are synonyms for !, &&, and ||, respectively.

For the logical operators, numeric expressions (int or float) are considered true if
nonzero, false if zero. Multi-component types (such as color) are considered true any
component is nonzero, false all components are zero. Strings are considered true if they
are nonempty, false if they are the empty string ("").

• another expression enclosed in parentheses: (). Parentheses may be used to guarantee
associativity of operations.

• Type casts, specified either by having the type name in parentheses in front of the value
to cast (C-style typecasts) or the type name called as a constructor (C++-style type con-
structors):

(vector) P /* cast a point to a vector */
(point) f /* cast a float to a point */
(color) P /* cast a point to a color! */

vector (P) /* Means the same thing */
point (f)
color (P)

The three-component types (color, point, vector, normal) may be cast to other three-
component types. A float may be cast to any of the three-component types (by placing
the float in all three components) or to a matrix (which makes a matrix with all diagonal

Open Shading Language Specification

40 CHAPTER 6. LANGUAGE SYNTAX

components being the float). Obviously, there are some type casts that are not allowed
because they make no sense, like casting a point to a float, or casting a string to a
numerical type.

• function calls

• assignment expressions: same thing as var = var OP expr :

var = expr (assign)
var += expr (add)
var -= expr (subtract)
var *= expr (multiply)
var /= expr (divide)
int-var &= int-expr (bitwise and)
int-var |= int-expr (bitwise or)
int-var ˆ= int-expr (bitwise exclusive or)
int-var <<= int-expr (integer shift left)
int-var >>= int-expr (integer shift right)

Note that the integer and bit-wise operators are only allowed with int variables and ex-
pressions. In general, var OP= expr is allowed only if var = var OP expr is allowed,
and means exactly the same thing. Please consult the operator tables for each individual
type in Chapter 5.

• ternary operator, just like C:

condition ? expr1 : expr2

This expression takes on the value of expr1 if condition is true (nonzero), or expr2 if
condition is false (zero).

Please refer to Chapter 5, where the section describing each data type describes the full
complement of operators that may be used with the type. Operator precedence in Open Shading
Language is identical to that of C.

6.3 Control flow: if, while, do, for

Conditionals in Open Shading Language just like in C or C++:

if (condition)
truestatement

and

if (condition)
truestatement

else
falsestatement

Open Shading Language Specification

6.3. CONTROL FLOW: IF, WHILE, DO, FOR 41

The statements can also be entire blocks, surrounded by curly braces. For example,

if (s > 0.5) {
x = s;
y = 1;

} else {
x = s+t;

}

The condition may be any valid expression, including:

• The result of any comparison operator (such as <, ==, etc.).

• Any numeric expression (int, color, point, vector, normal, matrix), which is con-
sidered “true” if nonzero and “false” if zero.

• Any string expression, which is considered “true” if it is a nonempty string, “false” if it
is the empty string ("").

• A closure, which is considered “true” if it’s empty (not assigned, or initialized with =0),
and “false” if anything else has been assigned to it.

• A logical combination of expressions using the operators ! (not), && (logical “and”), or
|| (logical “or”). Note that && and || short circuit as in C, i.e. A && B will only evaluate
B if A is true, and A || B will only evaluate B if A is false.

Repeated execution of statements for as long as a condition is true is possible with a while
statement:

while (condition)
statement

Or the test may happen after the body of the loop, with a do/while loop:

do
statement

while (condition);

Also, for loops are also allowed:

for (initialization-statement ; condition ; iteration-statement)
body

As in C++, a for loop’s initialization may contain variable declarations and initializations,
which are scoped locally to the for loop itself. For example,

for (int i = 0; i < 3; ++i) {
...

}

Open Shading Language Specification

42 CHAPTER 6. LANGUAGE SYNTAX

As with if statements, loop conditions may be relations or numerical quantities (which are
considered “true” if nonzero, “false” if zero), or strings (considered “true” if nonempty, “false”
if the empty string "").

Inside the body of a loop, the break statement terminates the loop altogether, and the
continue statement skip to the end of the body and proceeds to the next iteration of the loop.

6.4 Functions

6.4.1 Function calls

Function calls are very similar to C and related programming languages:

functionname (arg1 , ... , argn)

If the function returns a value (not void), you may use its value as an expression. It is fine
to completely ignore the value of even a non-void function.

In Open Shading Language, all arguments are passed by reference. This generally will not
be noticeably different from C-style “pass by value” semantics, except if you pass the same
variable as two separate arguments to a function that modifies an argument’s value.

6.4.2 Function definitions

You may define functions much like in C or C++.

return-type function-name (optional-parameters)
{

statements

}

Parameters to functions are similar to shader parameters, except that they do not permit
initializers. A function call must pass values for all formal parameters. Function parameters
in Open Shading Language are all passed by reference, and are read-only within the body of
the function unless they are also designated as output (in the same manner as output shader
parameters).

Like for shaders, statements inside functions may be actual executions (assignments, func-
tion call, etc.), local variable declarations (visible only from within the body of the function),
or local function declarations (callable only from within the body of the function).

The return type may be any simple data type, a struct, or a closure. Functions may
not return arrays. The return type may be void, indicating that the function does not return a
value (and should not contain a return statement). A return statement inside the body of the
function will halt execution of the function at that point, and designates the value that will be
returned (if not a void function).

Functions may be overloaded. That is, multiple functions may be defined to have the same
name, as long as they have differently-typed parameters, so that when the function is called the
list of arguments can select which version of the function is desired. When there are multiple

Open Shading Language Specification

6.4. FUNCTIONS 43

potential matches, function versions whose argument types match exactly are favored, followed
by those that match with type coercion (for example, passing an int when the function expects
a float, or passing a float when the function expects a color), and finally by trying to match
the return value to the type of variable the result is assigned to.

6.4.3 Operator overloading

OSL permits operator overloading, which is the practice of providing a function that will be
called when you use an operator like + or *. This is especially handy when you use struct
to define mathematical types and wish for the usual math operators to work with them. Here
is a typical example, which also shows the special naming convention that allows operator
overloading:

struct vector4 {
float x, y, z, w;

};

vector4 __operator__add__ (vector4 a, vector4 b) {
return vector4 (a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);

}

shader test ()
{

vector4 a = vector4 (.2, .3, .4, .5);
vector4 b = vector4 (1, 2, 3, 4);

vector4 c = a + b; // Will call __operator__add__(vector4,vector4)
printf ("a+b = %g %g %g %g\n", c.x, c.y, c.z, c.w);

}

The full list of these special function names is as follows (in order of decreasing operator prece-
dence):

Open Shading Language Specification

44 CHAPTER 6. LANGUAGE SYNTAX

- operator neg unary negation
˜ operator compl unary bitwise complement
! operator not unary boolean ‘not’

* operator mul
/ operator div
% operator mod
+ operator add
- operator sub

<< operator shl
>> operator shr

< operator lt
<= operator le
> operator gt
>= operator ge
== operator eq
!= operator ne

& operator bitand
ˆ operator xor
| operator bitor

6.5 Global variables

Global variables (sometimes called graphics state variables) contain the basic information that
the renderer knows about the point being shaded, such as position, surface orientation, and
default surface color. You need not declare these variables; they are simply available by default
in your shader. Global variables available in shaders are listed in Table 6.1.

Open Shading Language Specification

6.5. GLOBAL VARIABLES 45

Variable surface displacement volume
P R RW R
I R R
N RW RW
Ng R R
dPdu R R
dPdv R R
Ps R
u, v R R R
time R R R
dtime R R R
dPdtime R R R
Ci RW RW

Table 6.2: Accessibility of variables by shader type

Variable Description
point P Position of the point you are shading. In a displacement shader,

changing this variable displaces the surface.
vector I The incident ray direction, pointing from the viewing position to

the shading position P.
normal N The surface “Shading” normal of the surface at P. Changing N

yields bump mapping.
normal Ng The true surface normal at P. This can differ from N; N can be over-

ridden in various ways including bump mapping and user-provided
vertex normals, but Ng is always the true surface geometric normal
of the surface at P.

float u, v The 2D parametric coordinates of P (on the particular geometric
primitive you are shading).

vector dPdu, dPdv Partial derivatives ∂P/∂u and ∂P/∂v tangent to the surface at P.
point Ps Position at which the light is being queried (currently only used

for light attenuation shaders)
float time Current shutter time for the point being shaded.
float dtime The amount of time covered by this shading sample.
vector dPdtime How the surface position P is moving per unit time.
closure color Ci Incident radiance — a closure representing the color of the light

leaving the surface from P in the direction -I.

Table 6.1: Global variables available inside shaders.

Open Shading Language Specification

46 CHAPTER 6. LANGUAGE SYNTAX

Open Shading Language Specification

7 Standard Library Functions

7.1 Basic math functions

7.1.1 Mathematical constants

Open Shading Language defines several mathematical constants:

M PI π

M PI 2 π/2
M PI 4 π/4
M 2 PI 2/π

M 2PI 2π

M 4PI 4π

M 2 SQRTPI 2/
√

π

M E e
M LN2 ln2
M LN10 ln10
M LOG2E log2 e
M LOG10E log10 e

M SQRT2
√

2

M SQRT1 2
√

1/2

7.1.2 Mathematical functions

Most of these functions operate on a generic type that my be any of float, color, point,
vector, or normal. For color and point-like types, the computations are performed component-
by-component (separately for x, y, and z).

type radians (type deg)
type degrees (type rad)

Convert degrees to radians or radians to degrees.

47

48 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

type cos (type x)
type sin (type x)
type tan (type x)

Computes the cosine, sine, or tangent of x (measured in radians).

void sincos (type x, output type sinval, output type cosval)

Computes both the sine and cosine of x (measured in radians). If both are needed, this
function is less expensive than calling sin() and cos() separately.

type acos (type x)
type asin (type y)
type atan (type y over x)
type atan2 (type y, type x)

Compute the principal value of the arc cosine, arc sine, and arc For acos() and asin(),
the value of the argument will first be clamped to [−1,1] to avoid invalid domain.

For acos(), the result will always be in the range of [0,π], and for asin() and atan(),
the result will always be in the range of [−π/2,π/2]. For atan2(), the signs of both
arguments are used to determine the quadrant of the return value.

type cosh (type x)
type sinh (type x)
type tanh (type x)

Computes the hyperbolic cosine, sine, and tangent of x (measured in radians).

type pow (type x, type y)
type pow (type x, float y)

Computes xy. This function will return 0 for “undefined” operations, such as pow(-1,0.5).

type exp (type x)
type exp2 (type x)
type expm1 (type x)

Computes ex, 2x, and ex− 1, respectively. Note that expm1(x) is accurate even for very
small values of x.

type log (type x)
type log2 (type x)
type log10 (type x)
type log (type x, float b)

Computes the logarithm of x in base e, 2, 10, or arbitrary base b, respectively.

Open Shading Language Specification

7.1. BASIC MATH FUNCTIONS 49

type logb (type x)

Returns the exponent of x, as a floating-point number.

type sqrt (type x)
type inversesqrt (type x)

Computes
√

x and 1/
√

x. Returns 0 if x < 0.

type cbrt (type x)

Computes 3
√

x. The sign of the return value will match x.

float hypot (float x, float y)
float hypot (float x, float y, float z)

Computes
√

x2 + y2 and
√

x2 + y2 + zz, respectively.

type abs (type x)
type fabs (type x)

Absolute value of x. (The two functions are synonyms.)

type sign (type x)

Returns 1 if x > 0, -1 if x < 0, 0 if x = 0.

type floor (type x)
type ceil (type x)
type round (type x)
type trunc (type x)

Various rouinding methods: floor returns the largest integer less than or equal to x; ceil
returns the smallest integer greater than or equal to x; round returns the closest integer
to x, in either direction; and trunc returns the integral part of x (equivalent to floor if
x > 0 and ceil if x < 0).

type fmod (type a, type b)
type mod (type a, type b)

The fmod() function returns the floating-point remainder of a/b, i.e., is the floating-point
equivalent of the integer % operator. It is nearly identical to the C or C++ fmod function,
except that in OSL, fmod(a,0) returns 0, rather than NaN. Note that if a < 0, the return
value will be negative.

The mod() function returns a−b∗floor(a/b), which will always be a positive number or
zero. As an example, fmod(-0.25,1.0) = -0.25, but mod(-0.25,1.0) = 0.75. For
positive a they return the same value.

For both functions, the type may be any of float, point, vector, normal, or color.

Open Shading Language Specification

50 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

type min (type a, type b)
type max (type a, type b)
type clamp (type x, type minval, type maxval)

The min() and max() functions return the minimum or maximum, respectively, of a list
of two or more values. The clamp function returns

min(max(x,minval),maxval),

that is, the value x clamped to the specified range.

type mix (type x, type y, type alpha)
type mix (type x, type y, float alpha)

The mix function returns a linear blending : x∗ (1−α)+ y∗ (α)

type select (type x, type y, type cond)
type select (type x, type y, float cond)
type select (type x, type y, int cond)

The select function returns x if cond is zero, or y if cond is nonzero. This is roughly
equivalent to (cond ? y : x), except that if cond is a component-based type (such as
color), the selection happens on a component-by-component basis. It is presumed that
the underlying implementation is not a true conditional and will not incur any branching
penalty.

int isnan (float x)
int isinf (float x)
int isfinite (float x)

The isnan() function returns 1 if x is a not-a-number (NaN) value, 0 otherwise. The
isinf() function returns 1 if x is an infinite (Inf or –Inf) value, 0 otherwise. The
isfinite() function returns 1 if x is an ordinary number (neither infinite nor NaN),
0 otherwise.

float erf (float x)
float erfc (float x)

The erf() function returns the error function erf(x) = 2√
π

∫ x
0 e−t2

dt. The erfc returns the
complementary error function 1-erf(x) (useful in maintaining precision for large values
of x).

7.2 Geometric functions

ptype ptype (float f)
ptype ptype (float x, float y, float z)

Open Shading Language Specification

7.2. GEOMETRIC FUNCTIONS 51

Constructs a point-like value (ptype may be any of point, vector, or normal) from
individual float values. If constructed from a single float, the value will be replicated
for x, y, and z.

ptype ptype (string space, f)
ptype ptype (string space, float x, float y, float z)

Constructs a point-like value (ptype may be any of point, vector, or normal) from
individual float coordinates, relative to the named coordinate system. In other words,

point (space, x, y, z)

is equivalent to

transform (space, "common", point(x,y,z))

(And similarly for vector/normal.)

float dot (vector A, vector B)

Returns the inner product of the two vectors (or normals), i.e., A ·B=AxBx+AyBy+AzCz.

vector cross (vector A, vector B)

Returns the cross product of two vectors (or normals), i.e., A×B.

float length (vector V)
float length (normal V)

Returns the length of a vector or normal.

float distance (point P0, point P1)

Returns the distance between two points.

float distance (point P0, point P1, point Q)

Returns the distance from Q to the closest point on the line segment joining P0 and P1.

vector normalize (vector V)
normal normalize (normal V)

Return a vector in the same direction as V but with length 1, that is, V / length(V) .

Open Shading Language Specification

52 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

vector faceforward (vector N, vector I, vector Nref)
vector faceforward (vector N, vector I)

If dot (Nref, I) < 0, returns N, otherwise returns -N. For the version with only two
arguments, Nref is implicitly Ng, the true surface normal. The point of these routines is
to return a version of N that faces towards the camera — in the direction “opposite” of I.

To further clarify the situation, here is the implementation of faceforward expressed in
Open Shading Language:
vector faceforward (vector N, vector I, vector Nref)
{

return (I.Nref > 0) ? -N : N;
}

vector faceforward (vector N, vector I)
{

return faceforward (N, I, Ng);
}

vector reflect (vector I, vector N)

For incident vector I and surface orientation N, returns the reflection direction R = I
- 2*(N.I)*N. Note that N must be normalized (unit length) for this formula to work
properly.

vector refract (vector I, vector N, float eta)

For incident vector I and surface orientation N, returns the refraction direction using
Snell’s law. The eta parameter is the ratio of the index of refraction of the volume
containing I divided by the index of refraction of the volume being entered. The result
is not necessarily normalized and a zero-length vector is returned in the case of total in-
ternal reflection. For reference, here is the equivalent Open Shading Language of the
implementation:
vector refract (vector I, vector N, float eta)
{

float IdotN = dot (I, N);
float k = 1 - eta*eta * (1 - IdotN*IdotN);
return (k < 0) ? vector(0,0,0) : (eta*I - N * (eta*IdotN + sqrt(k)));

}

void fresnel (vector I, normal N, float eta,
output float Kr, output float Kt,
output vector R, output vector T);

According to Snell’s law and the Fresnel equations, fresnel computes the reflection
and transmission direction vectors R and T, respectively, as well as the scaling factors for
reflected and transmitted light, Kr and Kt. The I parameter is the normalized incident ray,
N is the normalized surface normal, and eta is the ratio of refractive index of the medium
containing I to that on the opposite side of the surface.

Open Shading Language Specification

7.3. COLOR FUNCTIONS 53

point rotate (point Q, float angle, point P0, point P1)
point rotate (point Q, float angle, vector axis)

Returns the point computed by rotating point Q by angle radians about the axis that
passes from point P0 to P1, or about the axis vector centered on the origin.

ptype transform (string tospace, ptype p)
ptype transform (string fromspace, string tospace, ptype p)
ptype transform (matrix Mto, ptype p)

Transform a point, vector, or normal (depending on the type of the ptype p argu-
ment) from the coordinate system named by fromspace to the one named by tospace.
If fromspace is not supplied, p is assumed to be in "common" space coordinates, so the
transformation will be from "common" space to tospace. A 4× 4 matrix may be passed
directly rather than specifying coordinate systems by name.

Depending on the type of the passed point p, different transformation semantics will be
used. A point will transform as a position, a vector as a direction without regard to
positioning, and a normal will transform subtly differently than a vector in order to
preserve orthogonality to the surface under nonlinear scaling.1

float transformu (string tounits, float x)
float transformu (string fromunits, string tounits, float x)

Transform a measurement from fromunits to tounits. If fromunits is not supplied, x will
be assumed to be in "common" space units.

For length conversions, unit names may be any of: "mm", "cm", "m", "km", "in", "ft",
"mi", or the name of any coordinate system, including "common", "world", "shader",
or any other named coordinate system that the renderer knows about.

For time conversions, units may be any of: "s", "frames", or "common" (which indicates
whatever timing units the renderer is using).

It is only valid to convert length units to other length units, or time units to other time
units. Attempts to convert length to time or vice versa will result in an error. Don’t even
think about trying to convert monetary units to time.

7.3 Color functions

color color (float f)
color color (float r, float g, float b)

Constructs a color from individual float values. If constructed from a single float,
the value will be replicated for r, g, and b.

1Technically, what happens is this: The from and to spaces determine a 4× 4 matrix. A point (x,y,z) will
transform the 4-vector (x,y,z,1) by the matrix; a vector will transform (x,y,z,0) by the matrix; a normal will
transform (x,y,z,0) by the inverse of the transpose of the matrix.

Open Shading Language Specification

54 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

color color (string colorspace, f)
color color (string colorspace, float r, float g, float b)

Constructs an RGB color that is equivalent to the individual float values in a named
color space. In other words,

color (colorspace, r, g, b)

is equivalent to
transformc (colorspace, "rgb", color(r, g, b))

float luminance (color rgb)

Returns the linear luminance of the color rgb, which is implemented per the ITU-R stan-
dard as 0.2126R+0.7152G+0.0722B.

color blackbody (float temperatureK)

The blackbody() function returns the blackbody emission (the incandescent glow of
warm bodies) expected from a material of the given temperature in Kelvin, in units of
W/m2. Note that emission() has units of radiance, so will require a scaling factor of
1/π on surfaces, and 1/4π on volumes to convert to W/m2/sr.

color wavelength color (float wavelength nm)

Returns an RGB color corresponding as closely as possible to the perceived color of a
pure spectral color of the given wavelength (in nm).

color transformc (string fromspace, string tospace, color Cfrom)
color transformc (string tospace, color Cfrom)

Transforms color Cfrom from color space fromspace to color space tospace. If fromspace
is not supplied, it is assumed to be transforming from "rgb" space.

7.4 Matrix functions

matrix matrix (float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33)

Constructs a matrix from 16 individual float values, in row-major order.

matrix matrix (float f)

Constructs a matrix with f in all diagonal components, 0 in all other components. In
other words, matrix(1) is the identity matrix, and matrix(f) is f*matrix(1).

Open Shading Language Specification

7.5. PATTERN GENERATION 55

matrix matrix (string fromspace, float m00, ..., float m33)
matrix matrix (string fromspace, float f)

Constructs a matrix relative to the named space, multiplying it by the space-to-common
transformation matrix. If the coordinate system name is unknown, it will be assumed to
be the identity matrix.

Note that matrix (space, 1) returns the space-to-common transformation matrix. If
the coordinate system name is unknown, it will be assumed to be the identity matrix.

matrix matrix (string fromspace, string tospace)

Constructs a matrix that can be used to transform coordinates from fromspace to tospace.
If either of the coordinate system names are unknown, they will be assumed to be the
identity matrix.

int getmatrix (string fromspace, string tospace, output matrix M)

Sets M to the matrix that transforms coordinates from fromspace to tospace. Return
1 upon success, or 0 if either of the coordinate system names are unknown (in which
case M will not be modified). This is very similar to the matrix(from,to) constructor,
except that getmatrix allows the shader to gracefully handle unknown coordinate system
names.

float determinant (matrix M)

Computes the determinant of matrix M.

matrix transpose (matrix M)

Computes the transpose of matrix M.

7.5 Pattern generation

float step (float edge, float x)
type step (type edge, type x)

Returns 0 if x < edge and 1 if x≥ edge.

The type may be any of of float, color, point, vector, or normal. For color and
point-like types, the computations are performed component-by-component (separately
for x, y, and z).

float linearstep (float edge0, float edge1, float x)
type linearstep (type edge0, type edge1, type x)

Returns 0 if x≤ edge0, and 1 if x≥ edge1, and performs a linear interpolation between 0
and 1 when edge0 < x < edge1. This is equivalent to step(edge0, x) when edge0 ==
edge1. For color and point-like types, the computations are performed component-by-
component (separately for x, y, and z).

Open Shading Language Specification

56 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

float smoothstep (float edge0, float edge1, float x)
type smoothstep (type edge0, type edge1, type x)

Returns 0 if x≤ edge0, and 1 if x≥ edge1, and performs a smooth Hermite interpolation
between 0 and 1 when edge0 < x < edge1. This is useful in cases where you would want
a thresholding function with a smooth transition.

The type may be any of of float, color, point, vector, or normal. For color and
point-like types, the computations are performed component-by-component.

float smooth linearstep (float edge0, float edge1, float x, float eps)
type smooth linearstep (type edge0, type edge1, type x, type eps)

This function is strictly linear between edge0+eps and edge1−eps but smoothly ramps
to 0 between edge0−eps and edge0+eps and smoothly ramps to 1 between edge1−eps
and edge1+ eps. It is 0 when x≤ edge0− eps, and 1 if x≥ edge1+ eps, and performs a
linear interpolation between 0 and 1 when edge0 < x < edge1. For color and point-like
types, the computations are performed component-by-component.

type noise (string noisetype, float u, ...)
type noise (string noisetype, float u, float v, ...)
type noise (string noisetype, point p, ...)
type noise (string noisetype, point p, float t, ...)

Returns a continuous, pseudo-random (but repeatable) scalar field defined on a domain
of dimension 1 (float), 2 (2 float’s), 3 (point), or 4 (point and float), with a return
value of either 1D (float) or 3D (color, point, vector, or normal).

The noisename specifies which of a variety of possible noise functions will be used.

"perlin", "snoise"

A signed Perlin-like gradient noise with an output range of [−1,1], approximate
average value of 0, and is exactly 0 at integer lattice points. This is equivalent to the
snoise() function.

"uperlin", "noise"

An unsigned Perlin-like gradient noise with an output range of (0,1), approximate
average value of 0.5, and is exactly 0.5 at integer lattice points. This is equivalent
to the noise() function (the one that doesn’t take a name string).

"cell"

A discrete function that is constant on [i, i+1) for all integers i (i.e., cellnoise(x)
== cellnoise(floor(x))), but has a different and uncorrelated value at every
integer. The range is [0,1], its large-scale average is 0.5, and its values are evenly
distributed over [0,1].

Open Shading Language Specification

7.5. PATTERN GENERATION 57

"hash"

A function that returns a different, uncorrelated (but deterministic and repeatable)
value at every real input coordinate. The range is [0,1], its large-scale average is
0.5, and its values are evenly distributed over [0,1].

"simplex"

A signed simplex noise with an output range of [−1,1], approximate average value
of 0.

"usimplex"

An unsigned simplex noise with an output range of [0,1], approximate average value
of 0.5.

"gabor"

A band-limited, filtered, sparse convolution noise based on the Gabor impulse func-
tion (see Lagae et al., SIGGRAPH 2012). Our Gabor noise is designed to have
somewhat similar frequency content and range as Perlin noise (range [−1,1], ap-
proximately large-scale average of 0). It is significantly more expensive than Perlin
noise, but its advantage is that it correctly filters automatically based on the input
derivatives. Gabor noise allows several optional parameters to the noise() call:

"anisotropic", <int>
"direction", <vector>

If anisotropic is 0 (the default), Gabor noise will be isotropic. If anisotropic
is 1, the Gabor noise will be anisotropic with the 3D frequency given by the
direction vector (which defaults to (1,0,0)). If anisotropic is 2, a hybrid
mode will be used which is anisotropic along the direction vector, but radi-
ally isotropic perpendicular to that vector. The direction vector is not used if
anisotropic is 0.

"bandwidth", <float>

Controls the bandwidth for Gabor noise. The default is 1.0.

"impulses", <float>

Controls the number of impulses per cell for Gabor noise. The default is 16.

"do filter", <int>

If do filter is 0, no filtering/antialiasing will be performed. The default is
1 (yes, do filtering). There is probably no good reason to ever turn off the
filtering, it is primarily to test that the filtering is working properly.

Open Shading Language Specification

58 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

Note that some of the noise varieties have an output range of [−1,1] but others have
range [0,1]; some may automatically antialias their output (based on the derivatives of
the lookup coordinates) and others may not, and various other properties may differ. The
user should be aware of which noise varieties are useful in various circumstances.

A particular renderer’s implementation of OSL may supply additional noise varieties not
described here.

The noise() functions take optional arguments after their coordinates, passed as to-
ken/value pairs (similarly to optional texture arguments). Generally, such arguments are
specific to the type of noise, and are ignored for noise types that don’t understand them.

type pnoise (string noisetype, float u, float uperiod)
type pnoise (string noisetype, float u, float v, float uperiod, float vperiod)
type pnoise (string noisetype, point p, point pperiod)
type pnoise (string noisetype, point p, float t, point pperiod, float tperiod)

Periodic version of noise, in which the domain wraps with the given period(s). Gener-
ally, only integer-valued periods are supported.

type noise (float u)
type noise (float u, float v)
type noise (point p)
type noise (point p, float t)

type snoise (float u)
type snoise (float u, float v)
type snoise (point p)
type snoise (point p, float t)

The old noise(...coords...) function is equivalent to noise("uperlin",...coords...)
and snoise(...coords...) is equivalent to noise("perlin",...coords...).

type pnoise (float u, float uperiod)
type pnoise (float u, float v, float uperiod, float vperiod)
type pnoise (point p, point pperiod)
type pnoise (point p, float t, point pperiod, float tperiod)

type psnoise (float u, float uperiod)
type psnoise (float u, float v, float uperiod, float vperiod)
type psnoise (point p, point pperiod)
type psnoise (point p, float t, point pperiod, float tperiod)

The old pnoise(...coords...) function is equivalent to pnoise("uperlin",...coords...)
and psnoise(...coords...) is equivalent to pnoise("perlin",...coords...).

Open Shading Language Specification

7.5. PATTERN GENERATION 59

type cellnoise (float u)
type cellnoise (float u, float v)
type cellnoise (point p)
type cellnoise (point p, float t)

The old cellnoise(...coords...) function is equivalent to noise("cell",...coords...).

type hashnoise (float u)
type hashnoise (float u, float v)
type hashnoise (point p)
type hashnoise (point p, float t)

Returns a deterministic, repeatable hash of the 1-, 2-, 3-, or 4-D coordinates. The return
values will be evenly distributed on [0,1] and be completely repeatable when passed the
same coordinates again, yet will be uncorrellated to hashes of any other positions (includ-
ing nearby points). This is like having a random value indexed spatially, but that will be
repeatable from frame to frame of an animation (provided its input is precisely identical).

int hash (float u)
int hash (float u, float v)
int hash (point p)
int hash (point p, float t)
int hash (int i)

Returns a deterministic, repeatable integer hash of the 1-, 2-, 3-, or 4-D coordinates.

type spline (string basis, float x, type y0, type y1, ... type yn−1)
type spline (string basis, float x, type y[])
type spline (string basis, float x, int nknots, type y[])

As x varies from 0 to 1, spline returns the value of a cubic interpolation of uniformly-
spaced knots y0...yn−1, or y[0]...y[n− 1] for the array version of the call (where n is the
length of the array), or y[0]...y[nknots− 1] for the version that explicitly specifies the
number of knots (which may be less than the full array length). The input value x will
be clamped to lie on [0,1]. The type may be any of float, color, point, vector, or
normal; for multi-component types (e.g. color), each component will be interpolated
separately.

The type of interpolation is specified by the basis name, basis parameter, which may be
any of: "catmull-rom", "bezier", "bspline", "hermite", "linear", or "constant".
Some basis types require particular numbers of knot values – Bezier splines require 3n+1
values, Hermite splines require 2n+ 2 values, and all of Catmull-Rom, linear, and con-
stant requires 3+n, where in all cases, n≥ 1 is the number of spline segments.

To maintain consistency with the other spline types, "linear" splines will ignore the first
and last data value; interpolating piecewise-linearly between y1 and yn−2, and "constant"
splines ignore the first and the two last data values.

Open Shading Language Specification

60 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

float splineinverse (string basis, float v, float y0, ... float yn−1)
float splineinverse (string basis, float v, float y[])
float splineinverse (string basis, float v, int nknots, float y[])

Computes the inverse of the spline() function, i.e., returns the value x for which
spline (basis, x, y...)

would return value v. Results are undefined if the knots do not specifiy a monotonic (only
increasing or only decreasing) set of values.

Note that the combination of spline and splineinverse makes it possible to compute
a full spline-with-nonuniform-abscissae:

float v = splineinverse (basis, x, nknots, abscissa);
result = spline (basis, v, nknots, value);

Open Shading Language Specification

7.6. DERIVATIVES AND AREA OPERATORS 61

7.6 Derivatives and area operators

float Dx (float a), Dy (float a), Dz (float a)
vector Dx (point a), Dy (point a), Dz (point a)
vector Dx (vector a), Dy (vector a), Dz (vector a)
color Dx (color a), Dy (color a), Dz (color a)

Compute an approximation to the partial derivatives of a with respect to each of two
principal directions, ∂a/∂x and ∂a/∂y. Depending on the renderer implementation, those
directions may be aligned to the image plane, on the surface of the object, or something
else.

The Dz() function is only meaningful for volumetric shading, and is expected to return 0
in other contexts. It is also possible that particular OSL implementations may only return
“correct” Dz values for particular inputs (such as P).

float filterwidth (float x)
vector filterwidth (point x)
vector filterwidth (vector x)

Compute differentials of the argument x, i.e., the approximate change in x between adja-
cent shading samples.

float area (point p)

Returns the differential area of position p corresponding to this shading sample. If p is
the actual surface position P, then area(P) will return the surface area of the section of
the surface that is “covered” by this shading sample.

vector calculatenormal (point p)

Returns a vector perpendicular to the surface that is defined by point p (as p is computed
at all points on the currently-shading surface), taking into account surface orientation.

float aastep (float edge, float s)
float aastep (float edge, float s, float ds)
float aastep (float edge, float s, float dedge, float ds)

Computes an antialiased step function, similar to step(edge,s) but filtering the edge to
take into account how rapidly s and edge are changing over the surface. If the differ-
entials ds and/or dedge are not passed explicitly, they will be automatically computed
(using filterwidth()).

Open Shading Language Specification

62 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

7.7 Displacement functions

void displace (float amp)
void displace (string space, float amp)
void displace (vector offset)

Displace the surface in the direction of the shading normal N by amp units as measured
in the named space (or "common" space if none is specified). Alternately, the surface
may be moved by a fully general offset, which does not need to be in the direction of the
surface normal.

In either case, this function both displaces the surface and adjusts the shading normal N to
be the new surface normal of the displaced surface (properly handling both continuously
smooth surfaces as well as interpolated normals on faceted geometry, without introducing
faceting artifacts).

void bump (float amp)
void bump (string space, float amp)
void bump (vector offset)

Adjust the shading normal N to be the surface normal as if the surface had been displaced
by the given amount (see the displace() function description), but without actually
moving the surface positions.

7.8 String functions

void printf (string fmt, ...)

Much as in C, printf() takes a format string fmt and an argument list, and prints the
resulting formatted string to the console.

Where the fmt contains a format string similar to printf in the C language. The %d,
%i, %o, and %x arguments expect an int argument. The %f, %g, and %e expect a float,
color, point-like, or matrix argument (for multi-component types such as color, the
format will be applied to each of the components). The %s expects a string or closure
argument.

All of the substition commands follow the usual C/C++ formatting rules, so format com-
mands such as "%6.2f", etc., should work as expected.

string format (string fmt, ...)

The format function works similarly to printf, except that instead of printing the re-
sults, it returns the formatted text as a string.

Open Shading Language Specification

7.8. STRING FUNCTIONS 63

void error (string fmt, ...)
void warning (string fmt, ...)

The error() and warning() functions work similarly to printf, but the results will be
printed as a renderer error or warning message, possibly including information about the
name of the shader and the object being shaded, and other diagnostic information.

void fprintf (string filename, string fmt, ...)

The fprintf() function works similarly to printf, but rather than printing to the default
text output stream, the results will be concatentated onto the end of the text file named by
filename.

string concat (string s1, ..., string sN)

Concatenates a list of strings, returning the aggregate string.

int strlen (string s)

Return the number of characters in string s.

int startswith (string s, string prefix)

Return 1 if string s begins with the substring prefix, otherwise return 0.

int endswith (string s, string suffix)

Return 1 if string s ends with the substring suffix, otherwise return 0.

int stoi (string str)

Convert/decode the initial part of str to an int representation. Base 10 is assumed.
The return value will be 0 if the string doesn’t appear to hold valid representation of the
destination type.

float stof (string str)

Convert/decode the initial part of str to a float representation. The return value will be
0 if the string doesn’t appear to hold valid representation of the destination type.

int split (string str, output string results[], string sep, int maxsplit)
int split (string str, output string results[], string sep)
int split (string str, output string results[])

Fills the result array with the words in the string str, using sep as the delimiter string.
If maxsplit is supplied, at most maxsplit splits are done. If sep is "" (or if not sup-
plied), any whitespace string is a separator. The value returned is the number of elements
(separated strings) written to the results array.

Open Shading Language Specification

64 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

string substr (string s, int start, int length)
string substr (string s, int start)

Return at most length characters from s, starting with the character indexed by start (be-
ginning with 0). If length is omitted, return the rest of s, starting with start. If start is
negative, it counts backwards from the end of the string (for example, substr(s,-1)
returns just the last character of s).

int getchar (string s, int n)

Returns the numeric value of the nth character of the string, or 0 if n does not index a
valid character of the string.

int hash (string s)

Returns a deterministic, repeatable hash of the string.

int regex search (string subject, string regex)
int regex search (string subject, int results[], string regex)

Returns 1 if any substring of subject matches a standard POSIX regular expression regex,
0 if it does not.

In the form that also supplies a results array, when a match is found, the array will be
filled in as follows:
results[0] the character index of the start of the sequence that

matched the regular expression.
results[1] the character index of the end (i.e., one past the last match-

ing character) of the sequence that matched the regular ex-
pression.

results[2i] the character index of the start of the sequence that
matched sub-expression i of the regular expression.

results[2i+1] the character index of the end (i.e., one past the last
matching character) of the sequence that matched sub-
expression i of the regular expression.

Sub-expressions are denoted by surrounding them in parentheses. in the regular expres-
sion.

A few examples illustrate regular expression searching:
regex_search ("foobar.baz", "bar") = 1
regex_search ("foobar.baz", "bark") = 0

int match[2];
regex_search ("foobar.baz", match, "[Oo]{2}") = 1

(match[0] == 1, match[1] == 3)
substr ("foobar.baz", match[0], match[1]-match[0]) = "oo"

int match[6];
regex_search ("foobar.baz", match, "(f[Oo]{2}).*(.az)") = 1

Open Shading Language Specification

7.9. TEXTURE 65

substr ("foobar.baz", match[0], match[1]-match[0]) = "foobar.baz"
substr ("foobar.baz", match[2], match[3]-match[2]) = "foo"
substr ("foobar.baz", match[4], match[5]-match[4]) = "baz"

int regex match (string subject, string regex)
int regex match (string subject, int results[], string regex)

Identical to regex search, except that it must match the whole subject string, not
merely a substring.

7.9 Texture

type texture (string filename, float s, float t, ...params...)
type texture (string filename, float s, float t,

float dsdx, float dtdx, float dsdy, float dtdy, ...params...)

Perform a texture lookup of an image file, indexed by 2D coordinates (s, t), antialiased
over a region defined by the differentials dsdx, dtdx, dsdy and dtdy (which are computed
automatically from s and t, if not supplied). Whether the results are assigned to a float
or a color (or type cast to one of those) determines whether the texture lookup is a single
channel or three channels.

The 2D lookup coordinate(s) may be followed by optional token/value arguments that
control the behavior of texture():

"blur", <float>

Additional blur when looking up the texture value (default: 0). The blur amount is
relative to the size of the texture (i.e., 0.1 blurs by a kernel that is 10% of the full
width and height of the texture).

The blur may be specified separately in the s and t directions by using the "sblur"
and "tblur" parameters, respectively.

"width", <float>

Scale (multiply) the size of the filter as defined by the differentials (or implicitly
by the differentials of s and t). The default is 1, meaning that no special scaling is
performed. A width of 0 would effectively turn off texture filtering entirely.

The width value may be specified separately in the s and t directions by using the
"swidth" and "twidth" parameters, respectively.

Open Shading Language Specification

66 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

"wrap", <string>

Specifies how the texture wraps coordinates outside the [0,1] range. Supported
wrap modes include: "black", "periodic", "clamp", "mirror", and "default"
(which is the default). A value of "default" indicates that the renderer should use
any wrap modes specified in the texture file itself (a non-"default" value overrides
any wrap mode specified by the file).
The wrap modes may be specified separately in the s and t directions by using the
"swrap" and "twrap" parameters, respectively.

"firstchannel", <int>

The first channel to look up from the texture map (default: 0).

"subimage", <int>
"subimage", <string>

Specify the subimage (by numerical index, or name) of the subimage within a multi-
image texture file (default: subimage 0).

"fill", <float>

The value to return for any channels that are requested, but not present in the texture
file (default: 0).

"missingcolor", <color>, "missingalpha", <float>

If present, supplies a missing color (and alpha value) that will be used for miss-
ing or broken textures – instead of treating it as an error. If you want a miss-
ing or broken texture to be reported as an error, you must not supply the optional
"missingcolor" parameter.

"alpha", <floatvariable>

The alpha channel (presumed to be the next channel following the channels returned
by the texture() call) will be stored in the variable specified. This allows for
RGBA lookups in a single call to texture().

"errormessage", <stringvariable>

If this option is supplied, any error messages generated by the texture system will
be stored in the specified variable rather than issuing error calls to the renderer, thus
leaving it up to the shader to handle any errors. The error message stored will be ""
if no error occurred.

"interp", <string>

Overrides the texture interpolation method: "smartcubic" (the default), "cubic",
"linear", or "closest".

Open Shading Language Specification

7.9. TEXTURE 67

type texture3d (string filename, point p, ...params...)
type texture3d (string filename, point p, vector dpdx, vector dpdy,

vector dpdz, ...params...)

Perform a 3D lookup of a volume texture, indexed by 3D coordinate p, antialiased over
a region defined by the differentials dpdx, dpdy, and dpdz (which are computed automat-
ically from p, if not supplied). Whether the results are assigned to a float or a color
(or type cast to one of those) determines whether the texture lookup is a single channel or
three channels.

The p coordinate (and dpdx, dpdy, and dpdz derivatives, if supplied) are assumed to be
in "common" space and will be automatically transformed into volume local coordinates,
if such a transormation is specified in the volume file itself.

The 3D lookup coordinate may be followed by optional token/value arguments that con-
trol the behavior of texture3d():

"blur", <float>

Additional blur when looking up the texture value (default: 0). The blur amount is
relative to the size of the texture (i.e., 0.1 blurs by a kernel that is 10% of the full
width, height, and depth of the texture).
The blur may be specified separately in the s, t, and r directions by using the
"sblur", "tblur", and "rblur" parameters, respectively.

"width", <float>

Scale (multiply) the size of the filter as defined by the differentials (or implicitly by
the differentials of s, t, and r). The default is 1, meaning that no special scaling is
performed. A width of 0 would effectively turn off texture filtering entirely.
The width value may be specified separately in the s, t, and r directions by using the
"swidth", "twidth", and "rwidth" parameters, respectively.

"wrap", <string>

Specifies how the texture wraps coordinates outside the [0,1] range. Supported
wrap modes include: "black", "periodic", "clamp", "mirror", and "default"
(which is the default). A value of "default" indicates that the renderer should use
any wrap modes specified in the texture file itself (a non-"default" value overrides
any wrap mode specified by the file).
The wrap modes may be specified separately in the s, t, and r directions by using
the "swrap", "twrap", and "rwrap" parameters, respectively.

"firstchannel", <int>

The first channel to look up from the texture map (default: 0).

Open Shading Language Specification

68 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

"subimage", <int>
"subimage", <string>

Specify the subimage (by numerical index, or name) of the subimage within a multi-
image texture file (default: subimage 0).

"fill", <float>

The value to return for any channels that are requested, but not present in the texture
file (default: 0).

"missingcolor", <color>, "missingalpha", <float>

If present, supplies a missing color (and alpha value) that will be used for miss-
ing or broken textures – instead of treating it as an error. If you want a miss-
ing or broken texture to be reported as an error, you must not supply the optional
"missingcolor" parameter.

"time", <float>

A time value to use if the volume texture specifies a time-varying local transforma-
tion (default: 0).

"alpha", <floatvariable>

The alpha channel (presumed to be the next channel following the channels returned
by the texture3d() call) will be stored in the variable specified. This allows for
RGBA lookups in a single call to texture3d().

type environment (string filename, vector R, ...params...)
type environment (string filename, vector R,

vector dRdx, vector dRdy, ...params...)

Perform an environment map lookup of an image file, indexed by direction R, antialiased
over a region defined by the differentials dRdx, dRdy (which are computed automatically
from R, if not supplied). Whether the results are assigned to a float or a color (or type
cast to one of those) determines whether the texture lookup is a single channel or three
channels.

The lookup direction (and optional derivatives) may be followed by optional token/value
arguments that control the behavior of environment():

"blur", <float>

Additional blur when looking up the texture value (default: 0). The blur amount is
relative to the size of the texture (i.e., 0.1 blurs by a kernel that is 10% of the full
width and height of the texture).
The blur may be specified separately in the s and t directions by using the "sblur"
and "tblur" parameters, respectively.

Open Shading Language Specification

7.9. TEXTURE 69

"width", <float>

Scale (multiply) the size of the filter as defined by the differentials (or implicitly
by the differentials of s and t). The default is 1, meaning that no special scaling is
performed. A width of 0 would effectively turn off texture filtering entirely.
The width value may be specified separately in the s and t directions by using the
"swidth" and "twidth" parameters, respectively.

"firstchannel", <int>

The first channel to look up from the texture map (default: 0).

"fill", <float>

The value to return for any channels that are requested, but not present in the texture
file (default: 0).

"missingcolor", <color>, "missingalpha", <float>

If present, supplies a missing color (and alpha value) that will be used for miss-
ing or broken textures – instead of treating it as an error. If you want a miss-
ing or broken texture to be reported as an error, you must not supply the optional
"missingcolor" parameter.

"alpha", <floatvariable>

The alpha channel (presumed to be the next channel following the channels returned
by the environment() call) will be stored in the variable specified. This allows for
RGBA lookups in a single call to environment().

Open Shading Language Specification

70 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

int gettextureinfo (string texturename, string paramname,
output type destination)

Retrieves a parameter from a named texture file. If the file is found, and has a param-
eter that matches the name and type specified, its value will be stored in destination
and gettextureinfo will return 1. If the file is not found, or doesn’t have a matching
parameter (including if the type does not match), destination will not be modified and
gettextureinfo will return 0. Valid parameters recognized are listed below:

Name Type Description
"exists" int Result is 1 if the file exists and is an texture format that

Open Shading Language can read, or 0 if the file does
not exist, or could not be properly read as a texture. Note
that unlike all other queries, this query will “succeed”
(return 1) if the file does not exist.

"resolution" int[2] The resolution (x and y) of the highest MIPmap level
stored in the texture map.

"resolution" int[3] The resolution (x, y, and z) of the highest MIPmap level
stored in the 3D texture map. If it isn’t a volumetric
texture, the third component (z resolution) will be 1.

"channels" int The number of channels in the texture map.

"type" string Returns the semantic type of the texture, one of:
"Plain Texture", "Shadow", "Environment", "Volume

Texture".

"subimages" int Returns the number of subimages in the texture file.

"textureformat" string Returns the texture format, one of: "Plain Texture",
"Shadow", "CubeFace Shadow", "Volume Shadow",
"CubeFace Environment", "LatLong Environment",
"Volume Texture". Note that this differs from "type"
in that it specifically distinguishes between the different
types of shadows and environment maps.

"datawindow" int[] Returns the pixel data window of the image. The argu-
ment is an int array either of length 4 or 6, in which
will be placed the (xmin, ymin, xmax, ymax) or (xmin,
ymin, zmin, xmax, ymax, zmax), respectively. (N.B. the
z values may be useful for 3D/volumetric images; for 2D
images they will be 0).

"displaywindow" int[] Returns the display (a.k.a. full) window of the image.
The argument is an int array either of length 4 or 6,
in which will be placed the (xmin, ymin, xmax, ymax)
or (xmin, ymin, zmin, xmax, ymax, zmax), respectively.
(N.B. the z values may be useful for 3D/volumetric im-
ages; for 2D images they will be 0).

...continued...

Open Shading Language Specification

7.9. TEXTURE 71

Name Type Description
"worldtocamera" matrix If the texture is a rendered image, retrieves the world-to-

camera 3D transformation matrix that was used when it
was created.

"worldtoscreen" matrix If the texture is a rendered image, retrieves the matrix
that projected points from world space into a 2D screen
coordinate system where x and y range from −1 to +1.

"averagecolor" color Retrieves the average color (first three channels) of the
texture.

"averagealpha" float Retrieves the average alpha (the channel with "A" name)
of the texture.

anything else any Searches for matching name and type in the metadata or
other header information of the texture file.

Open Shading Language Specification

72 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

int pointcloud search (string ptcname, point pos, float radius,
int maxpoints, [int sort,] string attr, Type data[],
..., string attrN, Type dataN[])

Search the named point cloud for the maxpoints closest points to pos within the given
radius, returning the values of any named attributes of those points in the the given data
arrays. If the optional sort parameter is present and is nonzero, the ordering of the points
found will be sorted by distance from pos, from closest to farthest; otherwise, the results
are guaranteed to be the maxpoints closest to pos, but not necessarily sorted by distance
(this may be faster for some implementations than when sorted results are required).
The return value is the number of points returned, ranging from 0 (nothing found in the
neighborhood) to the lesser of maxpoints and the actual lengths of the arrays (the arrays
will never be written beyond their actual length).

These attribute names are reserved:
"position" point The position of each point
"distance" float The distance between the point and pos
"index" int The point’s unique index within the cloud

Note that the named point cloud will be created, if it does not yet exist in memory, and
that it will be initialized by reading a point cloud from disk, if there is one matching the
name.

Generally, the element type of the data arrays must match exactly the type of the point
data attribute, or else you will get a runtime error. But there are two exceptions: (1)
“triple” types (color, point, vector, normal) are considered interchangeable; and (2)
it is legal to retrieve float arrays (e.g., a point cloud attribute that is float[4]) into a
regular array of float, and the results will simply be concatenated into the larger array
(which must still be big enough, in total, to hold maxpoints of the data type in the file).

Example:
float r = 3.0;
point pos[10];
color col[10];
int n = pointcloud_search ("particles.ptc", P, r, 10,

"position", pos, "color", col);
printf ("Found %d particles within radius %f of (%p)\n", r, P);
for (int i = 0; i < n; ++i)

printf (" position (%f) -> color (%g)\n", pos[i], col[i]);

int pointcloud get (string ptcname, int indices[],
int count, string attr, type data[])

Given a point cloud and a list of points indices[0..count-1], store the attribute named
by attr for each point, respectively, in data[0..count-1]. Return 1 if successful, 0 for
failure, which could include the attribute not matching the type of data, invalid indices,
or an unknown point cloud file.

This can be used in conjunction with pointcloud search(), as in the following exam-
ple:

Open Shading Language Specification

7.9. TEXTURE 73

float r = 3.0;
int indices[10];
int n = pointcloud_search ("particles.ptc", P, r, 10,

"index", indices);
float temp[10]; // presumed to be "float" attribute
float quaternions[40]; // presumed to be "float[4]" attribute
int ok = pointcloud_get ("particles.ptc", indices, n,

"temperature", temp,
"quat", quaternions);

As with pointcloud search, the element type of the data array must either be equiva-
lent to the point cloud attribute being retrieved, or else when retrieving float arrays (e.g.,
a point cloud attribute that is float[4]) into a regular array of float, and the results will
simply be concatenated into the larger array (which must still be big enough, in total, to
hold maxpoints of the data type in the file).

int pointcloud write (string ptcname, point pos,
string attr1, type data1, ...)

Save the tuple (attr1, data1, ..., attrN, dataN) at position pos in a named point cloud. The
point cloud will be saved when the frame is finished computing. Return 1 if successful,
0 for failure, which could include the attributes not matching names or types at different
positions in the point cloud.

Example:

color C = ...;
int ok = pointcloud_write ("particles.ptc", P, "normal", N, "color", C);

Open Shading Language Specification

74 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

7.10 Material Closures

For closure color functions, the return “value” is symbolic and is may be passed to an output
variable or assigned to Ci, to be evaluated at a later time convenient to the renderer in order
to compute the exitant radiance in the direction -I. But the shader itself cannot examine the
numeric values of the closure color.

The intent of this specification is to give a minimal but useful set of material closures that
you can expect any renderer implementation to provide. Individual renderers may supply addi-
tional closures that are specific to the workings of that renderer. Additionally, invidual render-
ers may allow additional parameters or controls on the standard closures, passed as token/value
pairs following the required arguments (much like the optional arguments to the texture()
function). Consult the documentation for your specific renderer for details.

7.10.1 Surface material closures

closure color diffuse (normal N)

Returns a closure color that represents the Lambertian diffuse reflectance of a smooth
surface, ∫

Ω

1
π

max(0,N ·ω)Cl(P,ω)dω

where N is the unit-length forward-facing surface normal at P, Ω is the set of all outgoing
directions in the hemisphere surrounding N, and Cl(P,ω) is the incident radiance at P
coming from the direction −ω.

closure color phong (normal N, float exponent)

Returns a closure color that represents specular reflectance of the surface using the
Phong BRDF. The exponent parameter indicates how smooth or rough the material is
(higher exponent values indicate a smoother surface).

closure color oren nayar (normal N, float sigma)

Returns a closure color that represents the diffuse reflectance of a rough surface, im-
plementing the Oren-Nayar reflectance formula. The sigma parameter indicates how
smooth or rough the microstructure of the material is, with 0 being perfectly smooth
and giving an appearance identical to diffuse().

The Oren-Nayar reflection model is described in M. Oren and S. K. Nayar, “General-
ization of Lambert’s Reflectance Model,” Proceedings of SIGGRAPH 1994, pp.239-246
(July, 1994).

closure color ward (normal N, vector T, float xrough, float yrough)

Returns a closure color that represents the anisotropic specular reflectance of the sur-
face at P. The N and T vectors, both presumed to be unit-length, are the surface normal
and tangent, used to establish a local coordinate system for the anisotropic effects. The

Open Shading Language Specification

7.10. MATERIAL CLOSURES 75

xrough and yrough specify the amount of roughness in the tangent (T) and bitangent (N ×
T) directions, respectively.

The Ward BRDF is described in Ward, G., “Measuring and Modeling Anisotropic Re-
flection,” Proceedings of SIGGRAPH 1992.

closure color microfacet (string distribution, normal N, vector U,
float xalpha, float yalpha, float eta, int refract)

Returns a closure color that represents scattering on the surface using some micro-
facet distribution such as "beckmann" or "ggx" (as described in Walter et al., “Microfacet
Models for Refraction through Rough Surfaces,” Eurographics Symposium on Render-
ing, 2007). Both xalpha and yalpha control how rough the microstructure of the surface
is, possibly in an anisotropic way if they are different. In the anisotropic case U must
be a vector orthogonal to N to specify the direction. These values are expected to be the
alpha values of the distribution as it appears in the literature, not a universal roughness
measure. The eta parameter is the index of refraction of the material, and refract is a
enumeration flag that controls if the BSDF is reflective (0), refractive (1) or both at once
(2). The implementation must not rely on U when the roughness is isotropic or the given
vector is zero.

The list of supported distributions will change from renderer to renderer, and also the
behavior when an unsupported distribution is requested. It is up to the implementation to
issue an error or to default to a supported one. Also it is expected that the alias "default"
must work as a distribution in any renderer.

closure color microfacet (string distribution, normal N,
float alpha, float eta, int refract)

Returns a closure color that represents scattering on the surface using some microfacet
distribution. A simplified isotropic version of the previous function.

closure color reflection (normal N, float eta)

Returns a closure color that represents sharp mirror-like reflection from the surface.
The reflection direction will be automatically computed based on the incident angle. The
eta parameter is the index of refraction of the material. The reflection closure behaves
as if it were implemented as follows:

vector R = reflect (I, N);
return raytrace (R);

closure color refraction (normal N, float eta)

Returns a closure color that represents sharp glass-like refraction of objects “behind”
the surface. The eta parameter is the ratio of the index of refraction of the medium on the
“inside” of the surface divided by the index of refration of the medium on the “outside” of

Open Shading Language Specification

76 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

the surface. The “outside” direction is the one specified by N. The refraction direction will
be automatically computed based on the incident angle and eta, and the radiance returned
will be automatically scaled by the Fresnel factor for dielectrics. The refraction closure
behaves as if it were implemented as follows:

float Kr, Kt;
vector R, T;
fresnel (I, N, eta, Kr, Kt, R, T);
return Kt * raytrace (T);

closure color transparent ()

Returns a closure color that shows the light behind the surface without any refrac-
tive bending of the light directions. The transparent() closure behaves as if it were
implemented as follows:

return raytrace (I);

closure color translucent ()

Returns a closure color that represents the Lambertian diffuse translucence of a smooth
surface, which is much like diffuse() except that it gathers light from the far side of
the surface. The translucent() closure behaves as if it were implemented as follows:

return diffuse (-N);

7.10.2 Volumetric material closures

closure color isotropic ()

Returns a closure color that represents the scattering of an isotropic volumetric mate-
rial, scattering light evenly in all directions, regardless of its original direction.

closure color henyey greenstein (float g)

Returns a closure color that represents the directional volumetric scattering by small
suspended particles. The g parameter is the anisotropy factor, ranging from−1 to 1), with
positive values indicating predominantly forward-scattering, negative values indicating
predominantly back-scattering, and value of g = 0 resulting in isotropic scattering.

closure color absorption ()

Returns a closure color that does not represent any additional light scattering, but
rather signals to the renderer the absorption represents the scattering of an isotropic volu-
metric material, scattering light evenly in all directions, regardless of its original direction.

Open Shading Language Specification

7.10. MATERIAL CLOSURES 77

7.10.3 Light emission closures

closure color emission ()

Returns a closure color that represents a glowing/emissive material. When called in
the context of a surface shader group, it implies that light is emitted in a full hemisphere
centered around the surface normal. When called in the context of a volume shader group,
it implies that light is emitted evenly in all directions around the point being shaded.

The weight of the emission closure has units of radiance (e.g., W ·sr−1 ·m−2). This means
that a surface directly seen by the camera will directly reproduce the closure weight in
the final pixel, regardless of being a surface or a volume.

For surface emission, If you divide emission() by surfacearea() * M PI, then you
can easily specify the total emissive power of the light (e.g., W), regardless of its physical
size.

closure color background ()

Returns a closure color that represents the radiance of the “background” infinitely far
away in the view direction. The implementation is renderer-specific, but often involves
looking up from an HDRI environment map.

7.10.4 Signaling closures

closure color holdout ()

Returns a closure color that does not represent any additional light reflection from
the surface, but does signal to the renderer that the surface is a holdout object (appears
transparent in the final output yet hides objects behind it). “Partial holdouts” may be
designated by weighting the holdout() closure by a weight that is less than 1.0.

closure color debug (string outputname)

Returns a closure color that does not represent any additional light reflection from the
surface, but does signal to the renderer to add the weight of the closure (which may be a
float or a color) to the named output (i.e., AOV).

Open Shading Language Specification

78 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

7.11 Renderer state and message passing

int getattribute (string name, output type destination)
int getattribute (string name, int arrayindex, output type destination)
int getattribute (string object, string name, output type destination)
int getattribute (string object, string name, int arrayindex,

output type destination)

Retrieves a named renderer attribute or the value of an interpolated geometric variable.
If an object is explicitly named, that is the only place that will be searched ("global"
means the global scene-wide attributes). For the forms of the function with no object
name, or if the object name is the empty string "", the renderer will first search per-object
attributes on the current object (or interpolated variables with that name attached to the
object), then if not found it will search searching global scene-wide attributes.

If the attribute is found and can be converted to the type of destination, the attribute’s
value will be stored in destination and getattribute will return 1. If not found, or the
type cannot be converted, destination will not be modified and getattribute will return
0.

The automatic type conversions include those that are allowed by assignment in OSL
source code: int to float, float to int (truncation), float (or int) to triple (repli-
cating the value), any triple to any other triple. Additionally, the following conversions
which are not allowed by assignment in OSL source code will also be performed by this
call: float (or int) to float[2] (replication into both array elements), float[2] to
triple (setting the third component to 0).

The forms of this function that have the the arrayindex parameter will retrieve the indi-
vidual indexed element of the named array. In this case, name must be an array attribute,
the type of destination must be the type of the array element (not the type of the whole
array), and the value of arrayindex must be a valid index given the array’s size.

Tables giving “standardized” names for different kinds of attributes may be found below.
All renderers are expected to use the same names for these attributes, but are free to
choose any names for additional attributes they wish to make queryable.

Table 7.1: Names of standard attributes that may be retrieved.
Name Type Description
"osl:version" int Major*10000 + Minor*100 + patch.
"shader:shadername" string Name of the shader master.
"shader:layername" string Name of the layer instance.
"shader:groupname" string Name of the shader group.

Open Shading Language Specification

7.11. RENDERER STATE AND MESSAGE PASSING 79

Table 7.2: Names of standard camera attributes that may be retrieved. If the getattribute()
function specifies an objectname parameter and it is the name of a valid camera, the value
specific to that camera is retrieved. If no specific camera is named, the global or default camera
is implied.

Name Type Description
"camera:resolution" int[2] Image resolution.
"camera:pixelaspect" float Pixel aspect ratio.
"camera:projection" string Projection type (e.g., "perspective",

"orthographic", etc.)
"camera:fov" float Field of fiew.
"camera:clip near" float Near clip distance.
"camera:clip far" float Far clip distance.
"camera:clip" float[2] Near and far clip distances.
"camera:shutter open" float Shutter open time.
"camera:shutter close" float Shutter close time.
"camera:shutter" float[2] Shutter open and close times.
"camera:screen window" float[4] Screen window (xmin, ymin, xmax, ymax).

void setmessage (string name, output type value)

Store a name/value pair in an area where it can later be retrieved by other shaders attached
to the same object. If there is already a message with the same name attached to this
shader invocation, it will be replaced by the new value. The message value may be any
basic scalar type, array, or closure, but may not be a struct.

int getmessage (string name, output type destination)
int getmessage (string source, string name, output type destination)

Retrieve a message from another shader attached to the same object. If a message is found
with the given name, and whose type matches that of destination, the value will be stored
in destination and getmessage() will return 1. If no message is found that matches both
the name and type, destination will be unchanged and getmessage() will return 0.

The source, if supplied, designates from where the message should be retrieved, and may
have any of the following values:

"trace"

Retrieves data about the object hit by the last trace call made. Data recognized
include:
"hit" int Zero if the ray hit nothing, 1 if it hit.
"hitdist" float The distance to the hit.
"geom:name" string The name of the object hit.
other Retrieves the named global (P, N, etc.), shader param-

eter, or set message of the closest object hit (only if it
was a shaded ray).

Open Shading Language Specification

80 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

Note that which information may be retrieved depends on whether the ray was traced
with the optional "shade" parameter indicating whether or not the shader ought to
execute on the traced ray. If "shade" was 0, you may retrieve “globals” (P, N, etc.),
interpolated vertex variables, shader instance values, or graphics state attributes (ob-
ject name, etc.). But "shade" must be nonzero to correctly retrieve shader output
variables or messages that are set by the shader (via setmessage()).

float surfacearea ()

Returns the surface area of the area light geometry being shaded. This is meant to be used
in conjunction with emission() in order to produce the correct emissive radiance given
a user preference for a total wattage for the area light source. The value of this function
is not expected to be meaningful for non-light shaders.

int raytype (string name)

Returns 1 if ray being shaded is of the given type, or 0 if the ray is not of that type or if
the ray type name is not recognized by the renderer.

The set of ray type names is customizeable for renderers supporting OSL, but is expected
to include at a minimum "camera", "shadow", "diffuse", "glossy", "reflection",
"refraction". They are not necessarily mutually exclusive, with the exception that
camera rays should be of class "camera" and no other.

int backfacing ()

Returns 1 if the surface is being sampled as if “seen” from the back of the surface (or
the “inside” of a closed object). Returns 0 if seen from the “front” or the “outside” of a
closed object.

int isconnected (type parameter)

Returns 1 if the argument is a shader parameter and is connected to an earlier layer in
the shader group, 2 if the argument is a shader output parameter connected to a later
layer in the shader group, 3 if connected to both earlier and later layers, otherwise re-
turns 0. Remember that function arguments in OSL are always pass-by-reference, so
isconnected() applied to a function parameter will depend on what was passed in as
the actual parameter.

int isconstant (type expr)

Returns 1 if the expression can, at runtime (knowing the values of all the shader group’s
parameter values and connections), be discerned to be reducible to a constant value, oth-
erwise returns 0.

This is primarily a debugging aid for advanced shader writers to verify their assumptions
about what expressions can end up being constant-folded by the runtime optimizer.

Open Shading Language Specification

7.12. DICTIONARY LOOKUPS 81

7.12 Dictionary Lookups

int dict find (string dictionary, string query)
int dict find (int nodeID, string query)

Find a node in the dictionary by a query. The dictionary is either a string containing
the actual dictionary text, or the name of a file containing the dictionary. (The system
can easily distinguish between them.) XML dictionaries are currently supported, and
additional formats may be supported in the future. The query is expressed in “XPath 1.0”
syntax (or a reasonable subset therof).

The return value is a Node ID, an opaque integer identifier that is the handle of a node
within the dictionary data. The value 0 is reserved to mean “query not found” and the
value -1 indicates that the dictionary was not a valid syntax (or, if a file, could not be
read). If more than one node within the dictionary matched the query, the node ID of the
first match is returned, and dict next() may be used to step to the next matching node.

The version that takes a nodeID rather than a dictionary string simply interprets the query
as being relative to the node specified by nodeID, as opposed to relative to the root of the
dictionary.

All expensive operations (such as reading the dictionary from a file and the initial parsing
of the dictionary) are performed only once, and subsequent lookups merely copy data and
are thus inexpensive. The dictionary string is, therefore, used as a hash into a cached
data structure holding the parsed dictionary database. Implementations may also cache
individual node lookups or type conversions behind the scenes.

int dict next (int nodeID)

Return the node ID of the next node that matched the query that returned nodeID, or 0 if
nodeID was the last matching node for its query.

int dict value (int nodeID, string attribname, output type value)

Retrieves the named attribute of the given dictionary node, or the value of the node itself
if attribname is the empty string "". If the attribute is found, its value will be stored in
value and 1 will be returned. If the requested attribute is not found on the node, or if the
type of value does not appear to match that of the named node, value will be unmodified
and 0 will be returned.

Type conversions are straightforward: anything may be retrieved as a string; to retrieve as
an int or float, the value must parse as a single integer or floating point value; to retrieve
as a point, vector, normal, color, or matrix (or any array), the value must parse as the
correct number of values, separated by spaces and/or commas.

int trace (point pos, vector dir, ...)

Trace a ray from pos in the direction dir. The ray is traced immediately, and may incur
significant expense compared to rays that might be traced incidentally to evaluating the

Open Shading Language Specification

82 CHAPTER 7. STANDARD LIBRARY FUNCTIONS

Ci closure. Also, beware that this can be easily abused in such a way as to introduce
view-dependence into shaders. The return value is 0 if the ray missed all geometry, 1 if it
hit anything within the distance range.

Optional parameters include:

"mindist" float Minimum hit distance (default: zero)
"maxdist" float Maximum hit distance (default: infinite)
"shade" int Whether objects hit will be shaded (default: 0)
"traceset" string An optional named set of objects to ray trace (if pre-

ceded by a ‘-’ character, it means to exclude that set).

Information about the closest object hit by the ray may be retrieved using
getmessage("trace",...) (see Section 7.11).

The main purpose of this function is to allow shaders to “probe” nearby geometry, for
example to apply a projected texture that can be blocked by geometry, apply more “wear”
to exposed geometry, or make other ambient occlusion-like effects.

7.13 Miscellaneous

int arraylength (type A[])

Returns the length of the referenced array, which may be of any type.

void exit ()

Exits the shader without further execution. Within the main body of a shader, this is
equivalent to calling return, but inside a function, exit() will exit the entire shader,
whereas return would only exit the enclosing function.

Open Shading Language Specification

8 Formal Language Grammar

This section gives the complete syntax of Open Shading Language. Syntactic structures that
have a name ending in “-opt” are optional. Structures surrounded by curly braces { } may be
repeated 0 or more times. Text in typewriter face indicates literal text. The ε character is used
to indicate that it is acceptable for there to be nothing (empty, no token).

Lexical elements

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈digit-sequence〉 ::= 〈digit〉 { 〈digit〉 }

〈hexdigit〉 ::= 〈digit〉 | a | A | b | B | c | C | d | D | e | E | f | F

〈hexdigit-sequence〉 ::= 〈hexdigit〉 { 〈hexdigit〉 }

〈integer〉 ::= 〈sign〉 〈digit-sequence〉
| 〈sign〉 0x 〈hexdigit-sequence〉

〈floating-point〉 ::= 〈digit-sequence〉 〈decimal-part-opt〉 〈exponent-opt〉
| 〈decimal-part〉 〈exponent-opt〉

〈decimal-part〉 ::= ‘.’ { 〈digit〉 }

〈exponent〉 ::= ‘e’ 〈sign〉 〈digit-sequence〉

〈sign〉 ::= ‘-’ | ‘+’ | ε

〈number〉 ::= 〈integer〉
| 〈floating-point〉

〈char-sequence〉 ::= { 〈any-char〉 }

〈stringliteral〉 ::= ‘"’ 〈char-sequence〉 ‘"’

〈identifier〉 ::= 〈letter-or-underscore〉 { 〈letter-or-underscore-or-digit〉 }

83

84 CHAPTER 8. FORMAL LANGUAGE GRAMMAR

Overall structure

〈shader-file〉 ::= { 〈global-declaration〉 }

〈global-declaration〉 ::= 〈function-declaration〉
| 〈struct-declaration〉
| 〈shader-declaration〉

〈shader-declaration〉 ::=
〈shadertype〉 〈identifier〉 〈metadata-block-opt〉 (〈shader-formal-params-opt〉) {
〈statement-list〉 }

〈shadertype〉 ::= displacement | shader | surface | volume

〈shader-formal-params〉 ::= 〈shader-formal-param〉 { , 〈shader-formal-param〉 }

〈shader-formal-param〉 ::= 〈outputspec〉 〈typespec〉 〈identifier〉 〈initializer〉 〈metadata-block-opt〉
| 〈outputspec〉 〈typespec〉 〈identifier〉 〈arrayspec〉 〈initializer-list〉 〈metadata-block-opt〉

〈metadata-block〉 ::= [[〈metadata〉 { , 〈metadata〉 }]]

〈metadata〉 ::= 〈simple-typespec〉 〈identifier〉 〈initializer〉

Declarations

〈function-declaration〉 ::=
〈typespec〉 〈identifier〉 (〈function-formal-params-opt〉) { 〈statement-list〉 }

〈function-formal-params〉 ::= 〈function-formal-param〉 { , 〈function-formal-param〉 }

〈function-formal-param〉 ::= 〈outputspec〉 〈typespec〉 〈identifier〉 〈arrayspec-opt〉

〈outputspec〉 ::= output | ε

〈struct-declaration〉 ::= struct 〈identifier〉 { 〈field-declarations〉 } ;

〈field-declarations〉 ::= 〈field-declaration〉 { 〈field-declaration〉 }

〈field-declaration〉 ::= 〈typespec〉 〈typed-field-list〉 ;

〈typed-field-list〉 ::= 〈typed-field〉 { , 〈typed-field〉 }

〈typed-field〉 ::= 〈identifier〉 〈arrayspec-opt〉

〈local-declaration〉 ::= 〈function-declaration〉
| 〈variable-declaration〉

〈arrayspec〉 ::= [〈integer〉]
| []

Open Shading Language Specification

85

〈variable-declaration〉 ::= 〈typespec〉 〈def-expressions〉 ;

〈def-expressions〉 ::= 〈def-expression〉 { , 〈def-expression〉 }

〈def-expression〉 ::= 〈identifier〉 〈initializer-opt〉
| 〈identifier〉 〈arrayspec〉 〈initializer-list-opt〉

〈initializer〉 ::= = 〈expression〉

〈initializer-list〉 ::= = 〈compound-initializer〉

〈compound-initializer〉 ::= { 〈init-expression-list〉 }

〈init-expression-list〉 ::= 〈init-expression〉 { , 〈init-expression〉 }

〈init-expression〉 ::= 〈expression〉 | 〈compound-initializer〉

〈typespec〉 ::= 〈simple-typename〉
| closure 〈simple-typename〉
| 〈identifier-structname〉

〈simple-typename〉 ::= color | float | matrix | normal | point | string | vector | void

Statements

〈statement-list〉 ::= 〈statement〉 { 〈statement〉 }

〈statement〉 ::= 〈compound-expression-opt〉 ;
| 〈scoped-statements〉
| 〈local-declaration〉
| 〈conditional-statement〉
| 〈loop-statement〉
| 〈loopmod-statement〉
| 〈return-statement〉

〈scoped-statements〉 ::= { 〈statement-list-opt〉 }

〈conditional-statement〉 ::=
if (〈compound-expression〉) 〈statement〉

| if (〈compound-expression〉) 〈statement〉 else 〈statement〉

〈loop-statement〉 ::=
while (〈compound-expression〉) 〈statement〉

| do 〈statement〉 while (〈compound-expression〉) ;
| for (〈for-init-statement-opt〉 〈compound-expression-opt〉 ; 〈compound-expression-opt〉

) 〈statement〉

Open Shading Language Specification

86 CHAPTER 8. FORMAL LANGUAGE GRAMMAR

〈for-init-statement〉 ::=
〈expression-opt〉 ;

| 〈variable-declaration〉

〈loopmod-statement〉 ::= break ;
| continue ;

〈return-statement〉 ::= return 〈expression-opt〉 ;

Expressions

〈expression-list〉 ::= 〈expression〉 { , 〈expression〉 }

〈expression〉 ::= 〈number〉
| 〈stringliteral〉
| 〈type-constructor〉
| 〈incdec-op〉 〈variable-ref 〉
| 〈expression〉 〈binary-op〉 〈expression〉
| 〈unary-op〉 〈expression〉
| (〈compound-expression〉)
| 〈function-call〉
| 〈assign-expression〉
| 〈ternary-expression〉
| 〈typecast-expression〉
| 〈variable-ref 〉
| 〈compound-initializer〉

〈compound-expression〉 ::= 〈expression〉 { , 〈expression〉 }

〈variable-lvalue〉 ::= 〈identifier〉 〈array-deref-opt〉 〈component-deref-opt〉
| 〈variable lvalue〉 [〈expression〉]
| 〈variable lvalue〉 . 〈identifier〉

〈variable-ref 〉 ::= 〈identifier〉 〈array-deref-opt〉

〈array-deref 〉 ::= [〈expression〉]

〈component-deref 〉 ::= [〈expression〉]
| . 〈component-field〉

〈component-field〉 ::= x | y | z | r | g | b

〈binary-op〉 ::= * | / | %
| + | -
| << | >>
| < | <= | > | >=
| == | !=

Open Shading Language Specification

87

| &
| ˆ
| |
| && | and
| || | or

〈unary-op〉 ::= - | ˜ | ! | not

〈incdec-op〉 ::= ++ | --

〈type-constructor〉 ::= 〈typespec〉 (〈expression-list〉)

〈function-call〉 ::= 〈identifier〉 (〈function-args-opt〉)

〈function-args〉 ::= 〈expression〉 { , 〈expression〉 }

〈assign-expression〉 ::= 〈variable-lvalue〉 〈assign-op〉 〈expression〉

〈assign-op〉 ::= = | *= | /= | += | -= | &= | |= | ˆ= | <<= | >>=

〈ternary-expression〉 ::= 〈expression〉 ? 〈expression〉 : 〈expression〉

〈typecast-expression〉 ::= (〈simple-typename〉) 〈expression〉

Open Shading Language Specification

88 CHAPTER 8. FORMAL LANGUAGE GRAMMAR

Open Shading Language Specification

9 Describing shader groups

Below, we propose a simple grammar giving a standard way to serialize (i.e., express as text)
a full shader group, including instance values and connectivity of the shader layers. There are
only three statements/operations: set an instance value, make a shader instance, and connect
two instances.

param type paramname value... ;
param type paramname value... [[metadata...]] ;

Declare an instance value of a shader parameter to be applied to the next shader state-
ment. We refer to the parameter values set, which have not yet had their shader declared,
as pending parameters.

The paramname is the name of the parameter whose instance values are being specified.

The type is one of the basic numeric or string data types described in Chapter 5 (int,
float, color, point, vector, normal, matrix, or string), or an array thereof (in-
dicated by the usual notation of [size]). The type must match the declared type of the
parameter in the shader.

The actual values are listed individually, with multiple values (in the case of an array or an
aggregate such as a color) simply separated by whitespace. If fewer values are supplied
than the total number of array elements or aggregate components, the remainder will be
understood to be filled with 0 values. String values must be enclosed in double quotes
("like this").

The param statement is terminated by a semicolon (;).

Optionally, metadata hints may be supplied enclosed by double brackets, immediately
before the semicolon.

shader shadername layername ;

Declares a shader instance, which will receive any pending parameters that were declared
since the previous shader statement (and in the process, clear the list of pending param-
eters).

The shadername is an identifier that specifies the name of the shader to use as the master
for this instance. The layername is an identifier that names the layer (e.g., to subse-
quently specify it as a source or destination for connections).

The shader statement is terminated by a semicolon (;).

89

90 CHAPTER 9. DESCRIBING SHADER GROUPS

connect source layername.paramname destination layername.paramname ;

Establish a connection between an output parameter of a source layer and an input param-
eter of a destination layer, both of which have been previously declared within this group.
The source layer must have preceded the destination layer when they were declared, and
the parameters must exist and be of a compatible type so that it is meaningful to estab-
lish a connection (for example, you may connect a color to a color, but you may not
connect a color to a matrix).

If the named parameters are structures, the two structures must have identical data layout,
and establishing the connection will connect each corresponding data member. It is also
possible to make a connection of just a single member of a structure by using the usual
“dot” syntax, for example, for layers A and B, "connect A.c.x B.y" might connect A’s
parameter c, member x, to B’s parameter y (the types of c.x in A and y in B must match).

The connect statement is terminated by a semicolon (;).

Example

param string name "rings.tx" ; set pending ‘name’
param float scale 3.5 ; set pending ‘scale’
shader "texturemap" "tex1" ; tex1 layer, picks up ‘name’, ‘scale’
param string name "grain.tx" ;
shader "texturemap" "tex2" ;
param float gam 2.2 ;
shader "gamma" "gam1" ;
param float gam 1.0 ;
shader "gamma" "gam2" ;
param color woodcolor 0.42 0.38 0.22 ; example of a color param
shader "wood" "wood1" ;
connect tex1.Cout gam1.Cin ; connect tex1’s Cout to gam1’s Cin
connect tex2.Cout gam2.Cin ;
connect gam1.Cout wood1.rings ;
connect gam2.Cout wood1.grain ;

Open Shading Language Specification

Appendices

91

A Glossary

Attribute state. The set of variables that determines all the properties (other than shape) of a
geometric primitive — such as its local transformation matrix, the surface, displacement,
and volume shaders to be used, which light sources illuminate objects that share the at-
tribute state, whether surfaces are one-sided or two-sided, etc. Basically all of the options
that determine the behavior and appearance of the primitives, that are not determined by
the shape itself or the code of the shaders. A single attribute state may be shared among
multiple geometric primitives. Also sometimes called graphics state.

Built-in function. A function callable from within a shader, where the implementation of the
function is provided by the renderer (as opposed to a function that the shader author writes
in Open Shading Language itself).

Closure. A symbolic representation of a function to be called, and values for its parameters,
that are packaged up to be evaluated at a later time to yield a final numeric value.

Connection. A routing of the value of an output parameter of one shader layer to an input
paramter of another shader layer within the same shader group.

Default parameter value. The initial value of a shader parameter, if the renderer does not
override it with an instance value, an interpolated primitive variable, or a connection to
an output parameter of another layer within the group. The default value of a shader
parameter is explicitly given in the code for that shader, and may either be a constant or a
computed expression.

Geometric primitive. A single shape, such as a NURBS patch, a polygon or subdivision mesh,
a hair primitive, etc.

Global variables. The set of “built-in” variables describing the common renderer inputs to all
shaders (as opposed to shader-specific parameters). These include position (P), surface
normal (N), surface tangents (dPdu, dPdv), as well as standard radiance output (Ci). Dif-
ferent shader types support different subsets of the global variables.

Graphics state. See attribute state.

Group. See shader group.

Input parameter. A read-only shader parameter that provides a value to control a shader’s
behavior. Can also refer to a read-only parameter to a shader function.

93

94 APPENDIX A. GLOSSARY

Instance value. A constant value that overrides a default parameter value for a particular
shader instance. Each instance of a shader may have a completely different set of in-
stance values for its parameters.

Layer. See shader layer.

Output parameter. A read/write shader parameter allows a shader to provide outputs beyond
the global variables such as Ci. Can also refer to a read/write parameter to a shader
function, allowing a function to provide more outputs than a simple return value.

Primitive. Usually refers to a geometric primitive.

Primitive variable. A named variable, and values, attached to an individual geometric prim-
itive. Primitive variables may have one of serveral interpolation methods — such as a
single value for the whole primitive, a value for each piece or face of the primitive, or
per-vertex values that are smoothly interpolated across the surface.

Public method. A function within a shader that has an entry point that is visible and directly
callable by the renderer, as opposed to merely being called from other code within the
shader. Public methods must be top-level (not defined within other functions) and must
be preceeded by the public keyword.

Shader. A small self-contained program written in Open Shading Language, used to extend
the functionality of a renderer with custom behavior of materials and lights. A particular
shader may have multiple shader instances within a scene, each of which has ts unique
instance parameters, transformation, etc.

Shader function. A function written in Open Shading Language that may be called from
within a shader.

Shader group. An ordered collection of shader instances (individually called the layers of a
group) that are executed to collectively determine material properties or displacement of
a geometric primitive, emission of a light source, or scattering properties of a volume.
In addition to executing sequentially, layers within a group may optionally have any of
their input parameters explicitly connected to output parameters of other layers within the
group in an acyclic manner (thus, sometimes being referred to as a shader network).

Shader instance. A particular reference to a shader, with a unique set of instance values,
transformation, and potentially other attributes. Each shader instance is a separate entity,
despite their sharing executable code.

Shader network. See shader group.

Shader layer. An individual shader instance within a shader group.

Shader parameter. A named input or output variable of a shader. Input parameters provide
“knobs” that control the behavior of a shader; output parameters additional provide a way
for shaders to produce additional output beyond the usual global variables.

Shading. The computations within a renderer that implement the behavior and visual appear-
ance of materials and lights.

Open Shading Language Specification

Index

#define, 12
#elif, 12
#else, 12
#endif, 12
#if, 12
#ifdef, 12
#ifndef, 12
#include, 12
#pragma, 12
#undef, 12

aastep(), 61
abs(), 49
absorption, 76
acos(), 48
area(), 61
arraylength(), 82
arrays, 31
arrays, 36
asin(), 48
atan(), 48
atan2(), 48

backfacing(), 80
background, 77
blackbody(), 54
bump mapping, 62
bump(), 62

C preprocessor, see preprocessor
calculatenormal(), 61
cbrt(), 49
ceil(), 49
cellnoise(), 59
character set, 11
clamp(), 50
color, 25
color functions, 53

color(), 53, 54
comments, 11
concat(), 63
cos(), 48
cosh(), 48
cross(), 51

debug(), 77
degrees(), 47
derivative functions, 61
derivatives, 61
determinant(), 55
diffuse(), 74
displace(), 62
displacement, 62
distance(), 51
do/while, 41
dot(), 51
Dx(), 61
Dy(), 61

emission, 77
environment(), 68
erf(), 50
erfc(), 50
error(), 63
exit(), 82
exp(), 48
exp2(), 48
expm1(), 48
expressions, 37

fabs(), 49
faceforward(), 52
filterwidth(), 61
float, 24
floor(), 49
fmod(), 49

95

96 INDEX

for, 41
format(), 62
fprintf(), 63
fresnel(), 52
function calls, 42
functions

closures, 74
color, 53
definitions, 42
derivatives and area, 61
displacement, 62
geometric, 50
mathematical, 47
matrix, 54
pattern generation, 55
renderer state, 78
string, 62
texture, 65
trigonometric, 48

geometric functions, 50
getattribute(), 78
getchar(), 64
getmatrix(), 55
getmessage(), 79
gettextureinfo(), 70
global variables, 44–45

hash(), 59, 64
hashnoise(), 59
holdout(), 77
hypot(), 49

identifiers, 11
if, 40
int, 23
inversesqrt(), 49
isconnected(), 80
isconstant(), 80
isfinite(), 50
isinf(), 50
isnan(), 50
isotropic, 76

keywords, 12

layer, 6

length(), 51
linearstep(), 55
log(), 48
log10(), 48
log2(), 48
logb(), 49
luminance(), 54

material closure functions, 74
mathematical constants, 47
mathematical functions, 47
matrix, 29
matrix functions, 54
matrix(), 54, 55
max(), 50
message passing, 78
metadata, 18
microfacet(), 75
min(), 50
mix(), 50
mod(), 49

noise(), 56, 58
normal, 27
normal(), 51
normalize(), 51

operator overloading, 43
output parameters

shader, 17

parameters
shader, 16

pattern generation functions, 55
phong(), 74
pnoise(), 58
point, 27
point(), 51
pow(), 48
preprocessor, 12
printf(), 62
psnoise(), 58
public, 22
public methods, 22

radians(), 47
raytype(), 80

Open Shading Language Specification

INDEX 97

reflect(), 52
reflection(), 75
refract(), 52
refraction(), 75
reserved words, 12
rotate(), 53
round(), 49

setmessage(), 79
shader group, 6
shader layer, 6
shader metadata, 18
shader output parameters, 17
shader parameters, 16
shader types, 15
sign(), 49
sin(), 48
sincos(), 48
sinh(), 48
smoothstep(), 56
snoise(), 58
spline(), 59
splineinverse(), 60
split(), 63
sqrt(), 49
standard library functions, 82
startswith(), 63
step(), 55
stof(), 63
stoi(), 63
string, 30
string functions, 62
strlen(), 63
struct, 32, 36
structures, see struct
substr(), 64
surfacearea(), 80

tan(), 48
tanh(), 48
texture functions, 65
texture mapping, 65
texture(), 65
texture3d(), 67
trace, 81
transform(), 53

transformc(), 54
transformu(), 53
translucent(), 76
transparent(), 76
transpose(), 55
trigonometry, 48
trunc(), 49
types, 23–33

color, 25
float, 24
int, 23
matrix, 29
normal, 27
point, 27
string, 30
vector, 27
void, 31
arrays, 31, 36
shader, 15
structures, 32

units, 53

variable declarations, 35
vector, 27
vector(), 51
void, 31

ward(), 74
warning(), 63
while, 41
whitespace, 11

Open Shading Language Specification

	Introduction
	The Big Picture
	Lexical structure
	Characters
	Identifiers
	Comments
	Keywords and reserved words
	Preprocessor

	Gross syntax, shader types, parameters
	Shader types
	Shader parameters
	Shader metadata
	Public methods

	Data types
	int
	float
	color
	Point-like types: point, vector, normal
	matrix
	string
	void
	Arrays
	Structures
	Closures

	Language Syntax
	Variable declarations and assignments
	Expressions
	Control flow: if, while, do, for
	Functions
	Global variables

	Standard Library Functions
	Basic math functions
	Geometric functions
	Color functions
	Matrix functions
	Pattern generation
	Derivatives and area operators
	Displacement functions
	String functions
	Texture
	Material Closures
	Renderer state and message passing
	Dictionary Lookups
	Miscellaneous

	Formal Language Grammar
	Describing shader groups
	Glossary
	Index

