

OctaneRender® for Autodesk® 3DS Max® Plugin Manual

Version 2023 - Manual publication date: 28 November 2023 (Work in progress)

Cover image: "Neon Break" by Thomas Cheng, © 2020 Ambocc Studios LLC, All rights reserved.

All rights reserved. OctaneRender and OTOY and their logos are trademarks of OTOY, Incorporated.

Autodesk and AutoCAD are registered trademarks of Autodesk Inc and its subsidiaries and affiliates in the U.S. and other countries.

http://render.otoy.com

Contents

stallation Overview	1
Hardware Requirements	1
Internet Access	2
Software Requirements	2
NVIDIA® cuDNN Library File	3
Drivers	3
Installation	
Setting Up The Plugin In 3ds Max	
Devices	
Authenticate And Internet Access	5
Signing In To The Octane Licensing System	5
Manually Signing Out Of The OctaneRender Licensing System	
Failsafe Web Deactivation (Unlocks)	
OctaneRender Live™ IP/URL Whitelisting	8
Unattended/Silent Authorization (Online Mode Only)	
HTTP Proxy Support	
Proxy Server Configuration Via System Settings	
Windows®	
From The WinHTTP Configuration	
Hardware Options	
Single PCI-E Slot	
Two Or More PCI-E Slot Motherboards	
Networked Primary Node And Render Node Machines	
NVLink® On Consumer GPUs	14
Examples	
OctaneRender® Dongle Setup For Offline Mode	19

Octane for 3ds Max® Plugin Quick Overview	24
Octane Menu	25
Using the OctaneRender® Viewport	25
Material Editor	26
Lights And Cameras	28
Render Setup	
The Octane Menu	
Open Octane Viewport	35
Octane Properties	
Octane Object Parameters	
Export Octane Material	
Export To Octane Proxy	40
Octane LiveDB	41
Refresh LiveDB	45
Material Conversion - All	45
Material Converter Parameters	48
Material Conversion - Material Editor Current	50
Material Conversion - Selected Objects	50
Explore Scene Folder	
Octane Preferences Setting	51
Set Octane As Renderer	52
OctaneRender® Viewport	54
OctaneRender® Viewport Buttons	55
OctaneRender® Viewport Info	58
Material Editor	60
Materials	60
Composite Material	62
Composite Material Parameters	63
Diffuse Layer	64
Diffuse Layer Parameters	65

Diffuse Material	66
Diffuse Material Parameters	67
Glossy Material	70
Glossy Material Parameters	71
Hair Material	76
Hair Material Parameters	77
Layer Group	79
Layered Material	79
Layered Material Parameters	
Metallic Layer	81
Metallic Layer Parameters	
Metallic Material	
Metallic Material Parameters	85
Mix Material	
Mix Material Parameters	
Portal Material	
Portal Material Parameters	
Shadow Catcher	
Shadow Catcher Parameters	92
Sheen Layer	
Sheen Layer Parameters	94
Specular Layer	94
Specular Layer Parameters	
Specular Material	96
Specular Material Parameters	
Toon Material	
Toon Material Parameters	
Universal Material	
Universal Material Parameters	
Transmission	

Base	
Specular Layer	
Roughness	
IOR	
Coating Layer	
Thin Film Layer	
Sheen Layer	
Transmission Properties	
Geometric Properties	
Miscellaneous Properties	
Textures	
Displacement Vertex Mixer	
Vertex Displacement Mixer Parameters	
Vertex Displacement	
Vertex Displacement Parameters	
Texture Generators	
Alpha Image	
Alpha Image Parameters	
Baking Texture	
Baking Texture Parameters	
Checks Texture	
Float Texture	
Gaussian Spectrum	
Gaussian Spectrum Parameters	
Gradient Texture	
Gradient Texture Parameters	
Grayscale Image	
Greyscale Image Parameters	
IES Texture	
Instance Color Texture	

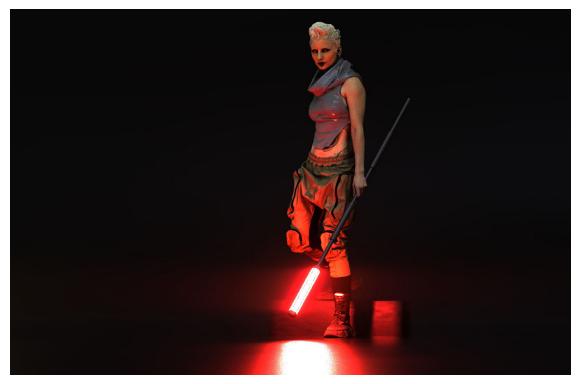
	Instance Range Texture	134
	Marble Texture	136
	Marble Texture Parameters	137
	Noise Texture	137
	Noise Texture Parameters	138
	OSL Texture	139
	Random Color Texture	139
	RGB Image	142
	RGB Image Parameters	143
	RGB Spectrum Texture	144
	Ridged Fractal Texture	145
	Ridged Fractal Parameters	145
	Saw Wave Texture	146
	Sine Wave Texture	147
	Triangle Wave Texture	148
	Turbulence Texture	148
	Turbulence Texture Parameters	149
	Color Vertex Attribute	149
	Grayscale Vertex Attribute	152
Т	exture Modifiers	153
	Add Texture	155
	Clamp Texture	155
	Color Correction	157
	Comparison	157
	Cosine Mix Texture	158
	Dirt Texture	159
	Dirt Texture Parameters	161
	Falloff Map	162
	Falloff Map Parameters	164
	Invert Texture	164

Mix Texture	165
Multiply Texture	
Polygon Side	
Subtract Texture	
W Coordinate	
Transforms	171
2D Transformation	
3D Transformation	
Rotation	174
Scale	
UVW Transform	
Transform Value	
Projections	
Вох	
Cylindrical	
Mesh UV Projection	
OSL Projection	
OSL Delayed UV	
Perspective	
Spherical	
Triplanar Projection	
XYZ To UVW	
Emissions	
Black Body Emission	
Black Body Parameters	
IES Texture	
Texture Emission	193
Texture Emission Parameters	
Texture Environment	
Texture Environment Parameters	

Texture Displacement (v2021)	
Displacement Parameters	
Image Tiles	
Image Tile Parameters	
Toon Ramp	
Transform Value	
Mediums	
Absorption	
Absorption Parameters	
Scattering	
Scattering Parameters	
Volume Medium	
Volume Medium Parameters	212
Volume Ramp	214
Schlick	214
Random Walk	215
Random Walk Parameters	
Lights And Cameras	
Lighting	217
Daylight	219
Octane Daylight Parameters	219
Octane Light	221
Octane Light Parameters	
Octane IES Light	
Octane IES Light Parameters	227
Planetary Environment	
Planetary Environment Parameters	
Visible Environment	229
Sun Direction	230
Sun	230

Planetary Surface	230
Toon Directional	
Toon Directional Parameters	232
Toon Point	232
Toon Point Parameters	
Volume Spotlight	234
Volume Spotlight Parameters	234
Mesh Emitters	235
Emission Types	235
Cameras	236
Camera Settings	
OctaneRender® Camera Parameters	
OSL Baking	241
OSL Camera	243
Standard Camera	
Thin Lens	
Baking	
Panoramic	245
Universal Camera	247
Universal Lens Parameters	249
Camera Imager Settings	
Camera Imager Parameters	255
Camera Motion Blur Settings	257
Motion Blur Parameters	258
Camera Post Processing Settings	
Post Processing Parameters	
Sample Images With Post-Processing Applied	
Camera Tool Settings	
Camera Tool Parameters	
Render Setup	

Kernel
Render View Setting Parameters.270Render Settings.270Render Setting Parameters.271Kernel Type.273Kernel Type Parameters.274Direct Light.276Direct Light Kernel Parameters.278Quality.278Lights.279Sampling.279Adaptive Sampling.279Color.280Deep Image.281Path Tracing Parameters.283Quality.283Light.283Sampling.283Color.283Color.283Quality.283Color.283Quality.283Color.283Quality.283Color.283Color.283Color.283Color.283Color.283Color.283Color.285
Render Settings270Render Setting Parameters271Kernel Type273Kernel Type Parameters274Direct Light276Direct Light Kernel Parameters278Quality278Lights279Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling281Path Tracing Parameters283Color283Colot283Colot283Colot283Quality283Colot283Colot283Colot283Colot283Colot283Colot283Sampling284Adaptive Sampling285Color285Color285Color285Color285Color285
Render Setting Parameters271Kernel Type273Kernel Type Parameters274Direct Light276Direct Light Kernel Parameters278Quality278Lights279Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Light283Sampling283Color283Color283Color283Color283Color283Color283Color283Color283Color283Color283Color283Sampling284Adaptive Sampling285Color285Color285Color285Color285Color285Color285
Kernel Type 273 Kernel Type Parameters 274 Direct Light 276 Direct Light Kernel Parameters 278 Quality 278 Lights 279 Sampling 279 Adaptive Sampling 279 Color 280 Deep Image 280 Path Tracing 281 Path Tracing Parameters 283 Quality 283 Light 283 Color 283 Quality 283 Color 283 Sampling 284 Adaptive Sampling 285 Color 285
Kernel Type Parameters274Direct Light276Direct Light Kernel Parameters278Quality278Lights279Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing Parameters281Path Tracing Parameters283Light283Sampling283Color280Deep Image281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285Color285Color285
Direct Light276Direct Light Kernel Parameters278Quality278Lights279Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling283Color280Path Tracing Parameters283Color283Color283Color283Color283Sampling283Color283Sampling284Adaptive Sampling285Color285Color285
Direct Light Kernel Parameters278Quality278Lights279Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling284Adaptive Sampling285Color280
Quality278Lights279Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Light283Sampling284Adaptive Sampling285Color285
Lights279Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285
Sampling279Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285
Adaptive Sampling279Color280Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285
Color.280Deep Image.280Path Tracing.281Path Tracing Parameters.283Quality.283Light.283Sampling.284Adaptive Sampling.285Color.285
Deep Image280Path Tracing281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285
Path Tracing281Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285
Path Tracing Parameters283Quality283Light283Sampling284Adaptive Sampling285Color285
Quality283Light283Sampling284Adaptive Sampling285Color285
Light
Sampling
Adaptive Sampling
Color
Deep Image
PMC Kernel
PMC Kernel Parameters
Quality
Light
Sampling
Color
Info Channel


Info Channel Kernel Parameters	290
Quality	
Sampling	
Color	293
Deep Image	293
Adaptive Sampling	
Adaptive Sampling Parameters	
Camera	296
Devices	297
GPU Config	
GPU Config Parameters	
Network Configuration	
Primary Node, Render Nodes, And Daemons	
Tools	
Live DB	
Live DB Parameters	
Local DB	
Material Converter	
Material Converter Parameters	
Octane Export	
Octane Export Parameters	
Export Settings	
Export Setting Parameters	
1.9 Version Support	
1.9 Version Support Parameters	
Octane Preferences	
Octane Preference Parameters	
Support	
Common Scene Collection Settings	
Common Scene Collection Setting Parameters	

Forest Pack	
Forest Pack Parameters	
RailClone	
RailClone Parameters	
Standard Particles	
Standard Particle Parameters	
PFlow	
PFlow Parameters	
tyFlow	
tyFlow Parameters	
Phoenix FD	
Phoenix FD Parameters	
Ornatrix	
Ornatrix Parameters	
Hair & Fur	
Hair & Fur Parameters	
Account	
Standalone Edition	
Plugin Edition	
OctaneLive Account Parameter	
Render Elements	
Using The Passes	
Rendering And Effects	
Effects	
Post-Processing Effects	
Post-Processing Parameters	
Volume Mediums	
Octane Volume Parameters	
Hair And Fur	
Displacement	

Instancing	
Octane Proxy	
Motion Blur	
ORBX Proxy	
Vectron	
Rendering	
Object Visibility	
Object Visibility Parameters	
Batch Rendering	
Rendering Via Batch Render	
Canceling A Batch Render	
Rendering For VR	
Texture Baking	
Mesh Pre-Requirements	
Getting Started	
Baking Parameters	
Baking Tips	
Deep Image Rendering	
Enabling Deep Image Rendering	
Deep Image Parameters	
Render Layers	
Glossary	
Index	

Installation Overview

This section outlines hardware, software, and driver requirements in addition to specifying the steps needed to install OctaneRender[®] for 3ds $Max^{®}$.

Figure 1: Image courtesy of the 2022-11 Cyberpunk Body Library Samples located in the Lightstage Asset Packs section of the OTOY website

Hardware Requirements

OctaneRender requires the latest CUDA® 10 drivers and a CUDA-enabled NVIDIA® video card with support for <u>compute capability 3.0 or higher</u>. An up-to-date list can be found here. This includes Turing (e.g. RTX[™] 20 Series, Titan RTX, GeForce RTX, and GTX 16 Series), Quadro® GPUs, Volta[™] GPUs, GTX Titan (high-end), Pascal[™] (GTX 10xx), Maxwell (GTX 7xx, GTX8xx, GTX9xx), and Kepler[™] (GTX 680, GTX 690).

OctaneRender also requires a minimum of 8 GB RAM, and we recommend 16 GB or more.

Texture limits and differing power efficiency ratings also apply depending on the **GPU**¹ microarchitecture. GPUs from the GeForce® line are usually clocked higher and render faster than the more expensive Quadro® and Tesla GPUs.

GeForce cards are fast and cost-effective, but have less VRAM than Quadro and Tesla cards. OctaneRender scales perfectly in a multi-GPU configuration and can use different types of NVIDIA cards at once — e.g., a GeForce RTX 2080Ti combined with a Quadro RTX 6000. The official list of NVIDIA CUDA-enabled products is located at https://developer.nvidia.com/cuda-gpus.

NOTE: Using multiple GPUs together combines the cores, resulting in a linear speedup, but VRAM is not compounded. All textures, **HDRI**², geometry, and other scene elements must fit into a functional memory – each render GPU must have the same copy of all of the scene elements to complete the process. Therefore, this function is limited by the card with the least amount of VRAM. If there's not enough VRAM, then you can enable OctaneRender's Out-Of-Core features.

As OctaneRender does not use the CPU for rendering, a fast multi-core CPU is not required, but it does significantly improve scene-loading speeds.

Internet Access

Except for the demo versions, all OctaneRender® editions require authentication with its designated license key, and it requires internet access during the initial launch. Once you launch the program, OctaneRender® requests your <u>OTOY credentials</u>, and it attempts to retrieve an available license from the OctaneRender Live[™] server.

Software Requirements

OctaneRender[®] for 3DS Max[®] requires:

- **3DS Max Octane Plugin** If you do not own the current plugin, you can purchase it on our <u>purchasing page</u>, or you can upgrade your <u>existing license</u>.
- **3DS Max Host Application** 3DS Max host application versions 2013 and above for Windows®.
- $\mathsf{Microsoft}^{\mathbb{R}}$ Windows 7 or higher (64-bit).

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

²An image which presents more than 8 bit per color channel unlike most common image formats.

NVIDIA[®] cuDNN Library File

OctaneRender requires NVIDIA CuDNN to run. You can download the cuDNN library file from here: https://render.otoy.com/downloads/e5/c5/f2/20/cudnn64_7.dll

The library file should be placed in the either of these folders:

```
C:\Users\[user]\AppData\Local\OctaneRender\thirdparty\cudnn_7_4_1\
or
C:\Program Files\OTOY\[OctaneRender Enterprise 2020.1.x]\
```

Drivers

OctaneRender requires an NVIDIA® driver supporting at least CUDA® 10. Use NVIDIA Studio driver with version at least 435.80 for Windows to enable support for RTX hardware acceleration. You can find the download links for Windows® <u>here</u>.

Failure to install these driver versions may create instability. We cannot provide support to users of different driver versions.

The CUDA® driver is the part of the NVIDIA® driver stack that OctaneRender® uses. On Windows, it is part of the NVIDIA® graphics driver.

Installation

To install the OctaneRender[®] plugin, download the software from **Downloads** section of the OTOY[®] website and run the plugin installer. You must be logged in as admin to do this. While you are installing the program, you will be prompted to choose from a list of components. Install the components you need (figure 1).

Figure 1: Choosing the installed versions of 3ds Max[®]

Setting Up The Plugin In 3ds Max

Open 3ds Max and click on the **Octane** menu item then choose **Set Octane as Renderder** from the drop down menu (figure 2).

File Edit Tools Group Views Create Modifiers Animation Graph Editors Rendering Customize Scripting Civil View Help Substance Arnold	Octane
▝⊃ ᢏ ' & & ≝ ་ 🖪 ਙ 🛄 🗓 । ⊕ Ć 🖺 🔮 🚥 ा 📭 🞦 3? 났 % ಳ । ४	Open Octane Viewport
Modeling Freeform Selection Object Paint Populate	Octane properties
	Export Octane material
	Export to Octane Proxy
	Octane Live DB
	Refresh Live DB
	Material Conversion - All
[+] [Top] [Standard] [Wireframe] 🖤	Material Conversion - Current Compact Editor Slot
	Material Conversion - Selected Objects
	Explore Scene Folder
	Octane Preferences
	Add Octane Preset helper
	Open scene AOV Settings
	Set Octane as Renderer
	Timeline - Open

Devices

OctaneRender is a **GPU**¹-based render engine. It is important to manage the GPUs in the systems that are used for rendering. This is done from the **Devices** tab under **Render Settings**. Under this tab, the check-

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

boxes for unsupported GPUs are not shown, and you can enable just the GPUs with a supported compute model (figure 3).

3 Render Setu	up: OctaneRender 2023	8.1 - 14.03			OctaneRender	devices prefe	rences		
					- CUDA driver				
Target:	Production Rendering M	lode 🔻		nder	Driver version: 12.20				
Preset:				lidei	Available devices	Render	Use priority	Image	Denoise
Renderer:	OctaneRender 2023.1 -	14.03 🔻	Save File		1: NVIDIA GeForce RTX 4090 (compute model 8.9)		0	0	
View to Render:	Quad 4 - Perspective			•					
	Rende	er Elements							
Common K	ernel Camera D	Devices Tools	Support	: Account	- Device info				
▼ GPU Config					Memory size: 23.99 GB	Run time lin	nit: no		
	A CARLON COMPANY	Mar el a la la la	Carlos and		Shader cores: 16384	Integrated:			
1	SocianeRender" for use with Autodesk® 3ds ma	x® Design Software	2011 - 2021 O otoy		Multiprocessors: 128 Clock rate: 2.40 GHz	PCI bus:dev			
					– Device memory usage —	Univer mode	a: WDDM		
		Scene specific co	onfig		Total available device memory: 24563 MB				
Octane Device S	Settinas								
		Render Prior	ity Image D	Denoise					
1: NVIDIA G	eForce RTX 4090 (c.m. 8.				Engine runtime data: 0 bytes	Noc	e system data: 0	bytes	
	Apply				Film buffer: 0 bytes	Ima	ge textures: 0	bytes	
					Geometry: 0 bytes	Der	oiser: 0	bytes	
Use RTX accelera	ation				Unavailable: 0 bytes				
Devices supporti	ng Hardware Ray Tracing	(RTX) : (1)			- All devices				
					GPU headroom [MB]:	512			•
					Use RTX acceleration				
Network Cor	nfig					Close			
Open netwo	ork configuration								
			- 1 T						

Figure 3: The Devices tab

Use Priority enables the **Priority** option, which sets the render priority for the active GPUs. The render priority is necessary when a GPU is not dedicated to rendering, but is also shared among different processes in one machine. For example, a machine with one GPU shares the GPU for processes across the whole system, including the operating system. You usually set the desktop GPU as Priority to avoid desktop hiccups and slow-down. From here, you can also specify what GPUs are used for denoising and which ones are used for tonemapping.

Authenticate And Internet Access

Signing In To The Octane Licensing System

You need an internet connection before starting OctaneRender® for the first time in order for it to communicate with the OctaneRender® licensing system. When you start the application, this sign-in screen

appears (figure 1).

OctaneRender Authentication			×
			Artwork by Cornelius Dämmrich
🥟 🗴 octanerender	-		
Enter your OTOY credentials or create a new acco	ount 🔷 🗧	*	
Username		2	1
Password		10-14	
and the second se	Contract of		ATTACK D. C.
Sign in	The second		
		L. Contract	
Open Online	e Manual		diatour
OctaneRender Enterprise 2020.1.3			

Figure 1: Signing in with OTOY[®] credentials

Enter your OTOY® account username and password, then click the **Sign in** button.

At this point, the single sign-on and licensing system pulls a valid license key from your account on OTOY's secure server.

If OctaneRender detects a connection problem, make sure all communications use HTTPS (TCP port 443) for the following:

- Standalone edition
- Standalone edition daemon
- Your OctaneRender plugin's host application, if you are using a plugin

The above may require updating your firewall settings. If the issue persists, check your proxy settings. Refer to the HTTP **Proxy**¹ Support topic in this manual for more information.

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

After signing in, OctaneRender keeps a session alive as long you run the Standalone or the plugin application on a regular basis. In most cases, you should not have to sign in to the OctaneRender licensing system again. This session also lets you link your local installation to other OTOY® services like Octane Render Cloud® (ORC[™]).

Manually Signing Out Of The OctaneRender Licensing System

To close a session, click on **Render Settings** -> **Account** tab -> **Activation / Deactivation dialog** -> **Sign out** button (figure 2). This closes the current session and releases all licenses bound to the current machine. You must close all OctaneRender applications before continuing to sign out.

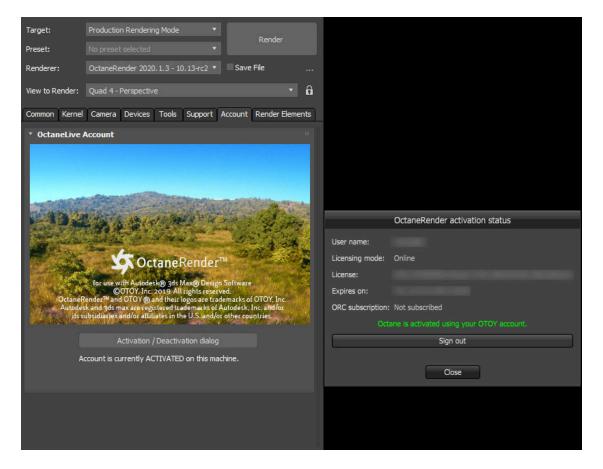


Figure 2: The OctaneRender Activation Status window

Failsafe Web Deactivation (Unlocks)

Licenses deactivate when you shut down the OctaneRender application. However, if your machine crashes and your application does not close properly, the license may still be active on your machine. In this case, you need to restart the application again to release the license. Other scenarios that could prevent the license from deactivating your license includes:

- The hard disk containing your OctaneRender license data has crashed and you replace it.
- You erase the hard disk for example, as part of a disk reformat or partition change.
- You change the network interface card and your network identification data changes for that machine.
- The OctaneRender license data on your machine is corrupt.

In all of these situations, the OctaneRender licensing system thinks your license is still active on that machine, but you and the licensing system are no longer able to access the license data. However, you can still deactivate your license using failsafe web deactivation.

You can deactivate or unlock a license (both are referred to as **Unlocks** on the licensing page) for a limited number of times over a given period. This number may change without notice in the future. You can see how many Unlocks you have remaining on your OTOY account page (figure 3).

Figure 3: OctaneLive Accounts page

To deactivate and unlock the license, click the **Deactivate** or **Unlock** button, depending on the version number of the license. If you run out of unlocks, contact us at <u>help@otoy.com</u> to request an unlock.

OctaneRender Live[™] IP/URL Whitelisting

These are the URLs that OctaneRender® requires access to as part of the activation process:

- Account.otoy.com
- Bridge.octanerender.com
- Live.octanerender.com

As the services above use dynamic load-balancing, the IPs of these servers often change. If you are whitelisting by IP, you need to redirect traffic through our gateway server at 52.1.219.88. You can do this by overriding the octanerender.com domain on your internal DNS server, or by setting the IP manually in your machine's hosts file.

Host file locations:

- Windows®: C:\Windows\System32\drivers\etc\hosts
- macOS®: /private/etc/hosts
- Linux: /etc/hosts

```
Host file entries:
```

```
52.1.219.88 account.otoy.com
52.1.219.88 bridge.octanerender.com
52.1.219.88 live.octanerender.com
```

If you have any problems, contact us <u>here</u>.

Unattended/Silent Authorization (Online Mode Only)

Another option for authorization is using an unattended authorization token. This allows OctaneRender® to activate in online licensing mode without requiring you to enter in a username and password. This works by saving an authorization file downloaded from our SSO system to every machine that runs OctaneRender® in a user-agnostic directory. This authorization file can be configured to only be valid for requests from a specific CIDR, preventing this file from being used outside your environment.

If the authorization file does not exist on a machine, you can still run OctaneRender®, but you need to enter the username (or login email address) and password.

As this feature has security implications for the licenses in your account, you will need to contact support to request that this feature be enabled for your account. As this feature is an extension of online licensing mode, it requires an active internet connection to function. To request this feature, contact us <u>here</u>.

HTTP Proxy Support

If you run OctaneRender[®] behind an existing proxy, OctaneRender tries to find and use your current proxy setup. Workarounds to bypass the proxy settings are invalid.

If you are trying to setup your proxy for the first time or your proxy requires authentication, you may configure it either by using your operating system proxy settings or environment variables.

Proxy Server Configuration Via System Settings

This option allows OctaneRender to retrieve your system settings. The configuration depends on your host operating system.

Windows®

OctaneRender can obtain its proxy configuration several different ways.

From Internet Explorer's LAN Settings, this configuration applies only to the current user. To change IE proxy settings:

- 1. Press the **Win**+**R** keys.
- 2. Enter inetcpl.cpl, 4 and click OK. The Internet Properties window displays.
- 3. Click LAN Settings.
- 4. Select the **Use A Proxy Server¹ For Your LAN** checkbox.
- 5. In the **Address** box, enter the proxy server's IP address.
- 6. In the **Port** box, enter the port number.

¹A Proxy Server, also known as an application-level gateway, is an intermediary server between the local network and the external servers from which a client is requesting a service. The external servers will only see the network proxy server's IP address thus providing some degree of security and privacy. There are various kinds of proxies, the most common are Web Proxies.

If you have a dedicated proxy for HTTPS traffic, click on **Advanced**, clear the **Use The Same Proxy¹ For All Protocols** checkbox, and specify the proxy address and port for the **Secure** server type.

From The WinHTTP Configuration

This configuration is system-wide, and stored in the registry. You can manage it using netsh winhttp. For more information, please check <u>Windows HTTP documentation</u> from Microsoft[®]. The proxy exceptions list is ignored.

Note: Environment variables are case sensitive, even on Windows, for security reasons.

The accepted syntax for proxy environment variables is [protocol://][user:password@]proxyhost[:port]

For example, you may specify a proxy for HTTPS network traffic as https_proxyy=johndoe:mypass@127.0.1.50. This tells OctaneRender[®] to use **127.0.1.50** as your proxy's address using the default port **80**, and authenticate as user **johndoe** with password **mypass**.

Hardware Options

The options for adding GPU^2 muscle to a computer depends on its available PCI-E slots.

OctaneRender[®] can handle 200 concurrent GPUs with enterprise all access as long as they're set up as CUDA[®] devices. It does not need to be SLI-enabled to detect additional GPUs in the machine, and it is not recommended for render engines - OctaneRender runs much better without it because it can't differentiate GPUs accessible from the local area network or in the PC's PCI-E slots.

Single PCI-E Slot

If the computer has a single PCI-E slot, there are not many options to extend rendering performance. You could add a more powerful GPU, as long as the power supply can provide enough power for it. Dual-GPU, single-slot card solutions can work, assuming that the power supply is sufficient to power the video card.

²The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

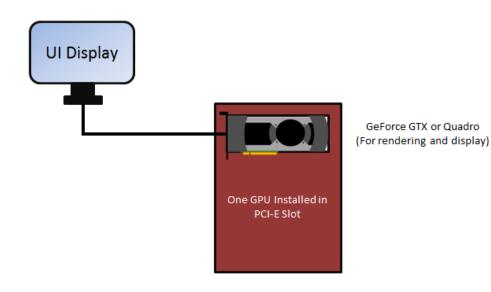


Figure 1: Single PCI-E slot configuration

Two Or More PCI-E Slot Motherboards

If the computer has two PCI-E slots, then you have more expansion options. If the power supply is sufficient, you can dedicate one GPU to the OS display, and then dedicate two or more GPUs for rendering. For the smoothest user experience with OctaneRender, we recommend dedicating one GPU for the display and OS to avoid slow and jerky interaction and navigation. The dedicated video card could be a cheap, low-power card since it will not be used for rendering, and it should be disabled under **CUDA** devices in **Device Manager** > **Preferences**.

In this situation, we recommend matching the rendering GPUs in model and VRAM size. You can do multi-GPU rendering, but the OS interface may still be slow as all the GPU processing power is dedicated to the rendering process. In multi-GPU setups, the amount of RAM available to OctaneRender is not equal to the sum of the VRAM on the GPUs, but it is restricted to the GPU with the smallest amount of VRAM. We recommend disabling GPUs that don't have enough VRAM in order to render large scenes that can fit in the remaining GPU's VRAM.

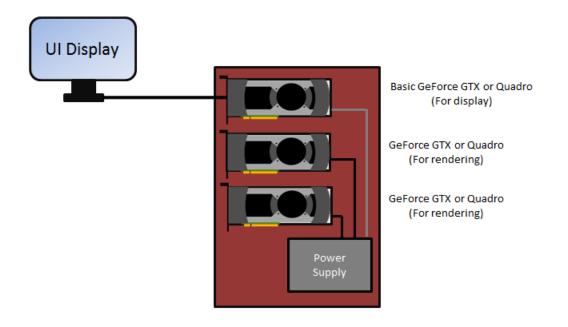


Figure 2: Multiple PCI-E slot configuration

Networked Primary Node And Render Node Machines

If a local area network is available, then you have many additional upgrade options. However, this requires each render node machine in the network to have its own designated OctaneRender license.

Just like in a multi-GPU setup, it is best to have the GPUs match in model and VRAM size. You can do multi-GPU rendering, but the OS interface may still be slow as all the GPU processing power is dedicated to the rendering process. The amount of RAM available to OctaneRender is not the total amount of VRAM from your GPUs, but it is the amount of VRAM from your smallest GPU. We recommend disabling GPUs that don't have enough VRAM in order to render large scenes that can fit in the remaining GPU's VRAM.

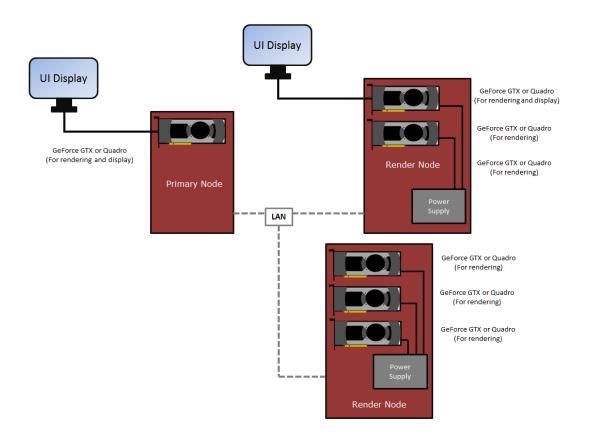


Figure 3: Networked GPU configuration

NVLink[®] On Consumer GPUs

NVLink[®] lets you double your VRAM by combining two cards into one pool of fast shared (not mirrored) memory. NVLink works with two cards, both of which need to be Quadro[®] or Geforce[®] RTX cards. Make sure that you use the bridge over your cards (Figure 4), otherwise you may experience a large performance drop.

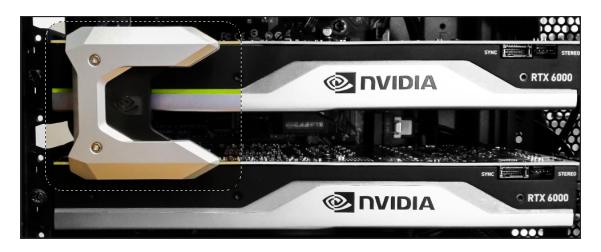


Figure 4: Example of a 3-slot NVLink bridge connecting two Quadro cards

To use NVLink with non-Quadro GPUs, enable SLI mode from the NVIDIA[®] Control Panel.

To use NVLink with Quadro GPUs, set the GPUs as Tesla Compute Cluster (TCC) devices. You can do this from the command line window with administrative privileges by running the nvidia-smi command within the NVSMI default folder (C:\Program Files\NVIDIA Corporation\NVSMI). The nvidia-smi command generates a table that displays your GPUs and what mode they are using (Figure 5).

						C 1	
🔤 Select Command Prompt					-		×
Microsoft Windows [Version 10.0.17134.590] (c) 2018 Microsoft Corporation. All rights reserve	od						
C:\Users\abby.breukers>cd C:\Program Files\NVIDIA	Corporat	tion\NVSM	11				
C:\Program Files\NVIDIA Corporation\NVSMI>nvidia-s Ned Mar 27 14:40:02 2019	smi						
NVIDIA-SMI 419.14 Driver Version: 419.14	CUD	DA Versio	on: 10.1	+ +			
GPU Name TCC/WDDM Bus-Id D: Fan Temp Perf Pwr:Usage/Cap Memory-L	Usage G	GPU-Util	Compute M.				
0 Quadro RTX 6000 TCC 00000000:01:00.6 33% 45C P0 67W / 260W 0MiB / 2433	0 Off		Off Default				
1 Quadro RTX 6000 TCC 00000000:07:00.6 33% 45C P0 62W / 260W 0MiB / 2433		0%	N/A Default	+			
	+			+			
Processes: GPU PID Type Process name			GPU Memory Usage				
No running processes found							
				+			
C:\Program Files\NVIDIA Corporation\NVSMI>							

Figure 5: Table showing the devices in the machine, including the GPU ID and the mode of each device

To change the mode, use the following syntax in the command line:

nvidia-smi -g {GPU_ID} -dm {0|1}

Where, 0 = WDDM and 1 = TCC.

Examples

This command switches the first Quadro GPU to WDDM mode:

```
C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi -g 0 -dm 0
```

This command switches the first Quadro GPU to TCC mode:

C:\Program Files\NVIDIA Corporation\NVSMI**nvidia-smi -g 0 -dm 1**

When the devices are set and NVLink is installed, you can combine p2p video memory. This is evident in the OctaneRender **Devices** tab under **File** > **Preferences** (Figure 6). The device's **Preferences** window shows

status info per device (Figure 7), not the total VRAM memory combined. OctaneRender uses p2p when the the primary device's VRAM is maxed out.

- CUDA driver						
Driver version: 10.20 – Available CUDA devices ————————————————————————————————————						
Device					Densies	
Device	Peers	Render	Use priority	Tonemap	Denoise	
1: Quadro RTX 6000 (compute model 7.5)	Peers	Render	Use priority	Tonemap	Denoise	

Figure 6: You can specify VRAM pooling peers for NVLink[®]-enabled devices

– Device info –								
Memory size:	23.76 GB		Run time	e limit:	no			
CUDA cores:	4608		Integrate	ed:	no			
Multiprocessors:	72		PCI bus:	device:	01:00			
Clock rate:	1.69 GHz		Driver m	odel:	тсс			
- Device memo	ry usage —							
Total available d	evice memo	ry: 24335 MB						
Engine ru	intime data:	0 bytes		Nodesys	stem data:	0 bytes		
Film buffe	er:	0 bytes		Image t	extures:	0 bytes		
Geometry	<i>r</i> :	0 bytes		Denoise	:r:	0 bytes		
Unavailat	ole:	0 bytes						

Figure 7: Device Info in the Preferences window shows info per device

- CUDA driver						
Driver version: 10.20						
 Available CUDA devices ——— 						
Device		Peers	Render	Use priority	Tonemap	Denoise
1: Quadro RTX 6000 (compute mo	odel 7.5)					
2: Quadro RTX 8000 (compute		Peer			\checkmark	\checkmark
2	Select a peer for this device					
	No peer					
21	2: Quadro RTX 8000 (comp	ute model 7.5)			
- Device info						
Memory size: 23.76 GB						
CUDA cores: 4608						
Multiprocessors: 72						
Clock rate: 1.69 GHz						
 Device memory usage —— 						
Total available device memory:						
	3 Ok	Cano	el			

Figure 8: Setting the peers for the NVLink[®]-enabled devices

Device	Peers	Render	Use priority	Tonemap	Denoise
1: Quadro RTX 6000 (compute model 7.5)	2				
2: Quadro RTX 6000 (compute model 7.5)	1	\checkmark		\checkmark	\checkmark

Figure 9: An example showing that device 1 is peered to device 2 and vice-versa

Note: You can't connect a display or monitor to the GPU adapters when the underlying devices are running in TCC mode. This causes unpredictable behavior, and may result in having to reboot the entire system.

OctaneRender[®] Dongle Setup For Offline Mode

To set up OctaneRender for offline use, you will need:

- A dongle
- DIT (Dongle Installer Tool)
- An internet-connected computer
- OctaneRender Standalone v3.08.3 or newer

Once you have the items, follow these steps:

- 1. Add your license to your dongle. Your OctaneRender standalone license is assigned to your dongle, pending activation. If you want to work offline with your OctaneRender plugin, you also need to assign the plugin license to the dongle.
- 2. Navigate to the **Dongles** tab in your OTOY[®] account. Click **Add Licenses**, and select the plugin license. Next, click **Assign To Dongle**.

OctaneRender Licenses						
OctaneRende	r for					
License ID	Version	Valid to	Unlocks Available	Status		
904701_44	V3	N/A	5	Available	Add to dongle 🔽	

Figure 1: Information found in the your OTOY account's Dongle tab

3. Download the <u>Dongle Installer Tool</u> by clicking **Install Licenses**. You can select Windows[®], macOS[®], or Linux for the installer.

Dongle	806			INSTALL LICENSES	ADD LICENSES
License ID	Product Name	Version	Valid to	Status	
11005406	OctaneRender	V3	N/A	Pending license installation	

Figure 2: Adding licenses to the dongle

- 4. Launch the Dongle Installer Tool, then log in with your OTOY credentials.
- 5. Click the checkbox in the **Select** column and click **Install Selected**. The installation may take a moment.

💣 Enter your OT	OY credentials		×
User name		I	
Password			
	Sign in	Exit	

Figure 3: Entering your OTOY credentials

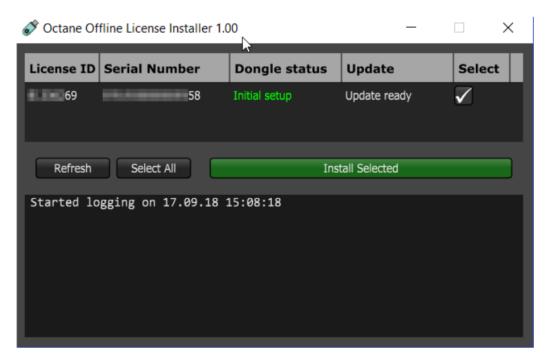


Figure 4: Installing the added licenses for offline use

6. You can now remove the dongle and use it with your designated offline machine. To make sure the dongle works, launch OctaneRender. When you click on File > Activation Status, you should see Octane is activated using an Octane dongle at the bottom of the Activation Status window. You can add OctaneRender plugin licenses to the dongle at a later time by repeating steps 1 and 2 for each license.

	Activation status
User name:	NO-PTy:
Licensing mode:	Offline
License:	
Expires on:	Wed 13 Feb 2019 14:07
Supported plugins:	
Octane is a	ctivated using an Octane dongle.
	Close

Figure 5: OctaneRender activation status without an internet connection

7. You need to update dongles every four months with the Dongle Installer Tool. An error occurs during the update process if the licenses are still active so ensure to deactivate the licenses prior to updating the dongles. You can deactivate the license by **signing out** from the OctaneRender application's Activation Status dialog or by using the **Unlock** buttons from your online Otoy account. To update your dongle, run the Dongle Installer Tool, select the checkbox next to your dongle, then click **Install Selected**. Your dongle is now updated.

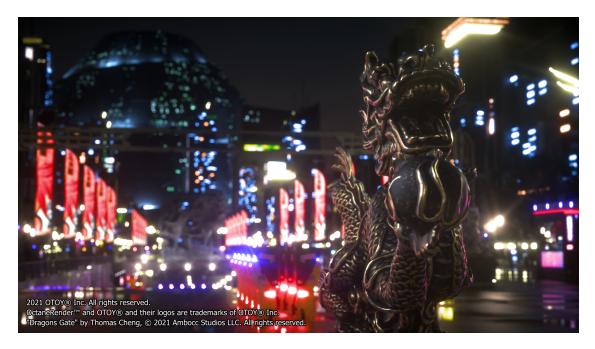
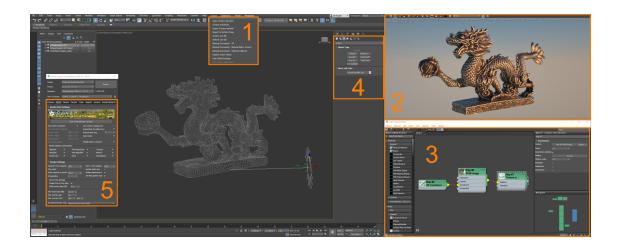

💣 Octane Offline License Installe	r 1.00		_	
License ID Serial Number	D	ongle status	Update	Select
55 69	R	eady to use	Update ready	
	_			
Refresh Select All		Ins	tall Selected	
Started logging on 20.11.	18 15	:59:02		

Figure 6: Updating a dongle

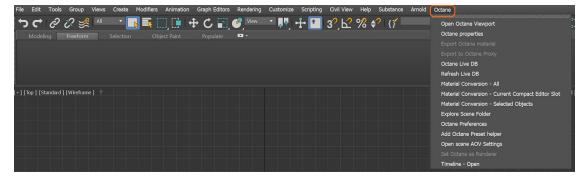
Note: By default, using the dongle in Linux systems requires sudo permissions. In order to get around this, copy the udev rules file, <u>99-senselock.rules</u>, into the udev rules directory. The udev rules directory is usually /etc/udev/rules.d, but this may vary across various Linux distributions. With the udev rules files in place, restart or force the udev daemon to reload the rules (udevadm control -- reload-rules). See the Debian documentation at https://wiki.debian.org/udev for more information.

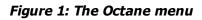
23 — Installation Overview


Octane for 3ds Max[®] Plugin Quick Overview

This document assumes you have a basic understanding of 3ds Max. There are five main areas where you will control Octane for 3ds Max. They are:

- 1. Octane Menu
- 2. OctaneRender[®] Viewport
- 3. Material¹ Editor
- 4. Lights and Cameras
- 5. Render Setup

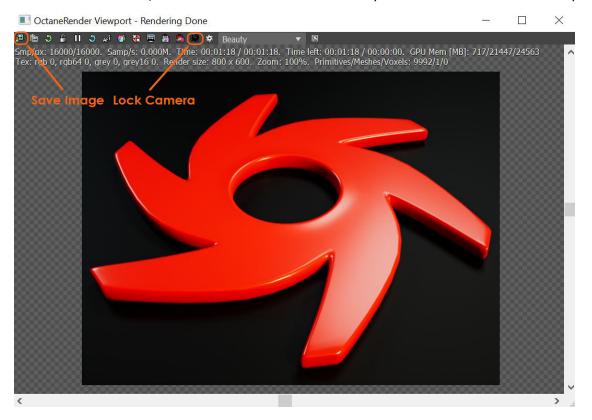

¹The representation of the surface or volume properties of an object.



Octane Menu

This is the quick access menu of common features used in Octane for 3ds Max®. By default, there are 15 options here (figure 1). For beginners, keep in mind **Set Octane as Renderer** and **Open Octane View-port**.

- Set Octane as Render set Octane as the Render engine to use.
- **Open Octane Viewport** start the OctaneRender® Viewport and display your renders.



Using the OctaneRender[®] Viewport

The OctaneRender Viewport window is where you will do all your render work. The view will dynamic change to follow your active 3ds Max[®] Viewport. You can save your final still renders from here. For animation, use the standard 3ds Max render window. For beginners, the main tools to understand are the **Save Image** and **Lock Camera** button (figure 1).

- **Save Image** Saves the current render from the OctaneRender Viewport to disk.
- Lock Camera Locks the camera for the 3ds Max Viewport that you want to render. If you disable this function, 3ds Max restarts the render each time you select a different 3ds Max Viewport.

Material Editor

You use either the Slate or Compact **Material**¹ Editor to work with Octane materials and maps. For this example, we will focus on the Slate Material Editor. The Octane materials and maps are under the **Octane** prefix groups in the Material/Map Browser (figure 1). To get started, focus on the **Standard Surface** or

¹The representation of the surface or volume properties of an object.

Universal Material, **RGB Image**, and **2D transformation** nodes as these nodes are the workhorses for designing surfaces and importing/manipulating texture maps.

- Universal Material Integrates well with PBR¹ (Physically Based Rendering) workflows like Substance Designer.
- Standard Surface Material Much like the Universal material, this is an uber shader that conforms to the Autodesk[®] standard surface specification.
- RGB Image Imports external texture maps to any material parameters that accept a texture map.
- 2D Transformation Sets the rotation, scale, and translation of the texture.

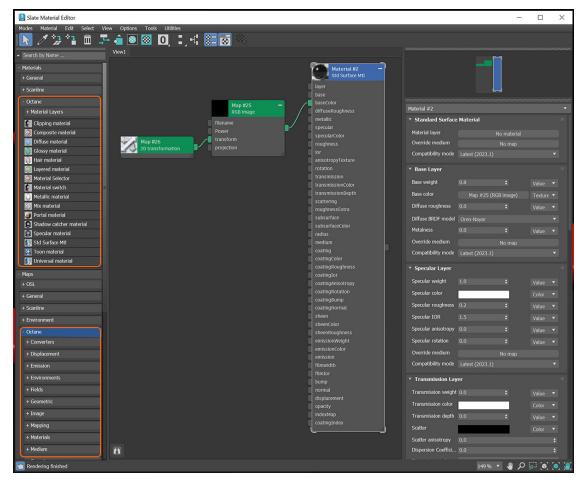


Figure 1: Locating the Octane materials and maps in the Slate Material Editor

¹A contemporary shading and rendering process that seeks to simplify shading characteristics while providing a more accurate representation of lighting in the real world.

Lights And Cameras

Use the **Create Panel** to setup Octane lights and cameras (figures 1 and 2).

- Octane Light provides a light source object to use for fast lighting setups without adding new geometry and materials.
- There are four camera types. The Universal camera is Octane's full-featured camera, with support for five different camera types:
 - Thin lens
 - Fisheye
 - Orthographic
 - Equirectangular
 - Cubemap

Figure 1: Octane Lights

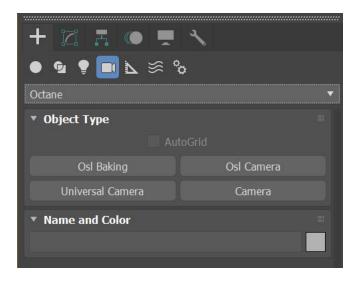


Figure 2: Octane Cameras

Render Setup

To make changes to the Octane render settings, open the 3ds Max® **Render Setup** window (figure 1).

ਙ ⊂ 2 % ≸ 🔍 ·	_	🕂 C 📰 🥙 verent 💀 🕂 💽 39, 62 % 🕫 (7 Greate Selection Serie VI) 💷 🖽 🖬 🎞	133 🧒 💌 🦔 🕿 🔀
Modeling Freeform Selection		Populate 🗢 •	
Polygon Modeling			Render Setup (F10)
Select Display Edit Custom		[+][Top][Standard][Wieframe] [+][Front][Standard][Wieframe]	
× 🔀	0 E E		
Name (Sorted Ascending)	🔺 Frozen Visible 🔻		

Figure 1: Render Setup Button

For the most part, you can leave the settings at default. To get started, focus should be placed on a few settings in the **Kernel** and **Devices** Tabs which will contribute considerably to render time and quality (figure 2). Specifically:

Kernel Tab

- **Render width** Width of the rendered image in OctaneRender[®] Viewport (figure 3).
- **Render height** Height of the rendered image in OctaneRender Viewport (figure 3).
- **Max. Samples** Lower samples render faster, but with lower quality. Higher samples render slower, but with higher quality (figure 4).

Devices Tab

- Render Setup: OctaneRender 2023.1 14.03 × Target: Preset: Renderer: Save File View to Render: Quad 4 - Perspective A Kernel Render View Settings Render Settings Render Layer Special Passes setup Passes Output Kernel Type Path Tracing
- Active Select the Active GPU¹ device(s) used for Octane, then apply the settings (figure 5).

Figure 2: Render Setup Window

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Render :	Render Setup: OctaneRender 2023.1 - 14.03							×	
Target:	Production Rendering	Mode		•		Dee	dor		
Preset:						Render			
Renderer:	OctaneRender 2023.1	- 14.03		•	Sav	e File			
View to Rend	er: Quad 4 - Perspective							• 6	
Common	Kernel Camera	Devices	Тос	ls Sup	port	Account	Render E	lements	
• Render V	Render View Settings OctaneRender™ @ 2011-2021 OctaneRender™ @ 2011-2021 Ootoy								
		Open Oc		er viewport					
	Use window resolution		Us	e viewport ba	ckground				
	Use production resolution			toUpdate mov	vable pro	×			
	Render width	800	🗘 Rel	resh time (m	s)	30			
	Render height	600	\$ Qu	ick mode			~		
	Image aspect	1.0	¢						
	Lock image aspect	I							

Figure 3: Render Width and Height

Render Setup: OctaneRender 2023.1 - 14.03								
- Target:	Production Render	ng Mode		•		Render		
Preset:	No preset selected			•				
Renderer:	OctaneRender 202	3.1 - 14.03		•	Save File			
View to Rend	ler: Quad 4 - Perspecti	/e					•	
Common	Kernel Camera	Devices		Tools Supp	ort Accou	nt Render	Elements	
Render View Settings								
► Render Settings								
Render L	ayer							
Special F	Passes setup							
Passes 0	output							
Kernel T	уре							
	Kernel type	Path Tracing			•			
	Max. samples	16000	¢	Alpha channel				
	Filter size	1.5	¢	Alpha shadow		✓		
	Ray epsilon	1.0	¢	Keep environm	ent			
	Path term. power	0.3	¢	Irradiance				
	Opacity threshold	1.0	¢	Nested dielectri	CS	✓		
	Max subdivision	10						
	Show error log							

Figure 4: Max. samples

🔝 Render S	etup: OctaneRender 2023.1 - 14.03	- 🗆 X
Target:	Production Rendering Mode	Duradar
Preset:	No preset selected	Render
Renderer:	OctaneRender 2023.1 - 14.03	Save File
View to Rende	r: Quad 4 - Perspective	• 6
Common	Kernel Camera Devices Tools Suppo	ort Account Render Elements
▼ GPU Conf		
	Use RTX acceleration Devices supporting Hardware Ray Tracing (RTX) : (1)	
► Network (Config	

Figure 5: Active Devices

The Octane Menu

The **Octane** menu provides access to many of the key features and tools available in OctaneRender[®] for 3DS $Max^{®}$ (Figure 1).

File Edit	Tools	Group	Views	Create	Modifiers	Animation	Graph Editors	Rendering	Customize	Scripting	Civil View	Help	Substance	Arnold	Octane	
うで	0	62 🌿	All	•	N 🛼 🛙	🗋 🚺 🖣	÷ C 📆	Yiew	💌 💂 🖣 🛛	-†- 🗈	3° b?	% \$	2 {		Open	Octane Viewport
				Selection		ject Paint	Populate	- <u>-</u>			- /					e properties
															Octan	e Live DB
															Refre	h Live DB
															Mater	al Conversion - All
+][Perspecti	ve][Sta	andard] [D	efault Sh	ading] 🍸											Mater	al Conversion - Current Compact Editor Slot
															Mater	al Conversion - Selected Objects
															Explo	re Scene Folder
															Octan	e Preferences
															Add C	Octane Preset helper
															Open	scene AOV Settings
																ctane as Renderer
															Timel	ne - Open

Figure 1: The Octane menu

The Octane menu is only visible in the default workspace. To make the Octane menu visible in a new workspace, go to **Rendering** > **Render Setup**. From the Render Setup window, go to **Tools** tab > **User Global Preferences** section, then click the **Reset Octane Menu** button (Figure 2).

🔝 Render Set	up: OctaneRender 2023.1 - 14.03 —	\times
Target:	Production Rendering Mode	
Preset:	No preset selected	
Renderer:	OctaneRender 2023.1 - 14.03 Table Save File	
View to Render:	Quad 4 - Perspective	Ĥ
Common H	Kernel Camera Devices Tools Support Account Render El	ements
► Live DB		
Material Con	nverter	
Octane expo	ort	
Export setti	ings	
1.9 version s		
Octane Pref	ferences	
	Open Octane Preferences	
Tr	roubleshooting	
	Open OCIO issue Resolver	
	Open Timeline issue Resolver	
	Explore Scene Folder	
	Explore Project Folder	
	Explore 3dsMax Folder	
	Explore Octane Log Folder	
	Explore Octane Preferences Folder	
(Open Log Window Reset Octane Menu	

Figure 2: The Reset Octane menu button

Open Octane Viewport

This quick access option opens the **OctaneRender® Viewport** (figure 1). See **OctaneRender Viewport** section for more information.

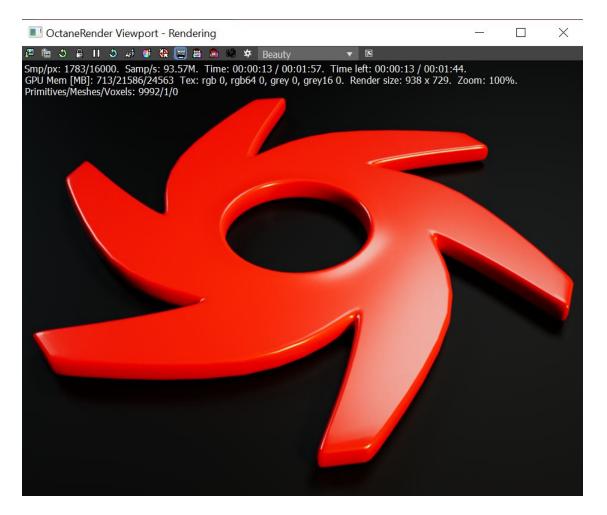


Figure 1: The OctaneRender Viewport

Octane Properties

This option opens the **Octane Object Properties** window. You can also open this window by **right-clicking** on an object in the scene. The window provides a list of all objects in a scene along with a set of parameters that you can edit for each scene object (figure 1).

Octane object properties	>	<
octane_logo	Movable proxy	
light1_lightEmmit1 light2_lightEmmit2	Vertex motion blur	
light3_lightEmmit3	Object motion blur	
floor_floor	Motion blur steps 2 💠	
	(info: Kernel Motion blur is disabled.)	
	Object layer ID 1 💠	
	Baking group ID 1 🛟	
	Dirt visibility 🖌	
	Curvature visibility 🖌	
	Object Layer Helper	
	Velocity channel ID 0 💠	
	User Instance ID -1 💠	
	start 0 \Leftrightarrow end 1 \Leftrightarrow	
	Instance Obj: (none)	
	se12345678	9
		✓ 20
		~
	Custom AOV None	
	Custom AOV chan. All	
	Hide	
	Renderable	
	Visible to Camera 🖌	
	Visibility 1.0 💠	
1 Selected	🖌 auto syn	

Figure 1: The Octane Object Properties window

Octane Object Parameters

Movable Proxy¹ - Allows real-time updates in the OctaneRender[®] **Viewport** for OctaneRender proxies that change in a scene. Unchecked, it will ignore any updates to the object, which can noticeably affect the updating process on large scenes. This is required for instanced objects will can help manage memory more efficiently.

Vertex Motion Blur² - Enable this option if you need motion blur and the object contains vertex-level deformations.

Object Motion Blur - Enable this option if an object does not have any deformation animation, but the object is moving or rotating. If the object contains deforming animation, then enable both Object Motion Blur and Vertex Motion Blur for the Object.

Motion Blur Steps - Determines how many steps before and after the current frame OctaneRender applies motion blur. If you have fast curved objects moving, then increase this value.

Object Layer ID - Works with render layers. for more information, see the **Render Layers³** topic in this manual.

Baking Group ID - This ID type works with the texture baking process. For more information, see the **Tex-ture Baking⁴** topic in this manual.

Dirt Visibility - Enabled by default. Set to false to prevent object from being evaluated by a **Dirt Texture** node applied to other objects in a scene.

Curvature Visibility - Enabled by default. Set to false to prevent object from being evaluated by a **Curvature Texture** node applied to other objects in a scene.

Object Layer Helper - Creates and edits an Object Layer Helper in the scene. When you use a **Baking** camera, this helper lets you edit the **Baking** transform matrix.

Velocity Channel ID - The ID for the channel containing vertex velocity information.

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

²An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

³Render layers allow users to separate their scene geometry into parts, where one part is meant to be visible and the rest of the other parts "capture" the side effects of the visible geometry. The layers allow different objects to be rendered into separate images where, in turn, some normal render passes may be applied. The Render layers are meant for compositing and not to hide parts of the scene.

⁴A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead. **User Instance ID** - Set the instance IDs for all instances of the same Object. This is done by selecting an **Instance Object** as the first instance, then specifying the **Start** and **End** parameters according to the number of instances present. Clicking on the ellipses provides options as to the order that the IDs are applied to each corresponding instance. This parameter's value is **-1** by default. Used with **Instance Color** and **Instance Range** Nodes.

Instance Obj - This is an instance conversion tool.

- 1. Select and set an Object to be used as an instance source.
- 2. Once instance source is set, select object(s) to be converted to the instance source.
- 3. Clicking on the ellipses provide options to work with the instance.

S, E & 1 - 20 - These parameters specify light passes where **S** is for Sunlight, **E** is for Environment, and **1 - 20** are regular OctaneRender light ID flags. By default, all of these flags are active. If, for example, there is an OctaneRender light in the scene, its **Light Pass ID** is set to **2**, and the **2** flag is deactivated in an Object's Octane Object Properties, that light will not illuminate the object.

Custom AOV - Adds a mask to the object as a custom AOV that can be rendered along with other AOVs using Octane's AOV system.

Custom AOV Chan. - Determines which channel will contain the mask.

Hide - Hides the object in both the viewport and the render window.

Renderable - Hides the object in the render window.

Visible to Camera - Makes the object invisible to the camera but renders its shadow.

Visibility - Allows for a varying level of visibility instead of simply switching the visibility of the object on or off.

auto sy.. - Automatically sync your selection to the Max explorer window.

Export Octane Material

This provides options for exporting OctaneRender[®] **Material¹** to use in other projects. You can store the Material in the Local DB, upload it to the Live DB, or export it as an OctaneRender package in **ORBX**^{2®} format (figure 1).

¹The representation of the surface or volume properties of an object.

²The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

	Store items	
– Name and local	tion	
Location:	Live DB	
Category:	/Materials/Misc 🗸	
Item name:	Node graph	
Item description:		
– Author settings		
Full name:		
Credits:		
Copyright:		
	Ok Cancel	/

Figure 1: The Export Octane Material window

Export To Octane Proxy

This item lets you save a scene object as an OctaneRender[®] proxy (Figure 1). A proxy is an object saved as a separate file so you can use it in larger scenes. Mainly used to optimize viewport performance with a low resolution proxy object. Detailed information for working with OctaneRender proxies is in the **Octane Proxy¹** topic in this manual.

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

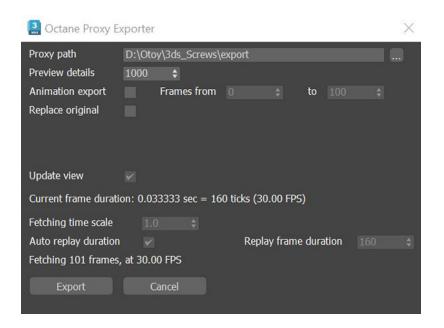


Figure 1: The Octane Proxy Exporter parameters

Octane LiveDB

The 3ds Max[®] plugin can access the OctaneRender[®] online LiveDB. The LiveDB is OctaneRender's asset database. It stores not just **Materials**¹, but groups of **Nodes** and even whole scenes shared by the OctaneRender community and the OctaneRender team. The asset database makes it easier for moving groups of Nodes, scenes, and assets across a myriad of OctaneRender plugins and Standalone edition.

You can access the LiveDB from the **Octane** menu (Figure 1), or by opening the **Render Setup** window, activating the **Tools** tab, and clicking on the **Open LiveDB** button (Figure 2).

¹A set of attributes or parameters that describe surface characteristics.

41 — The Octane Menu

Octane ×
Open Octane Viewport
Octane properties
Export Octane material
Export to Octane Proxy
Octane Live DB
Refresh Live DB
Material Conversion - All
Material Conversion - Current Compact Editor Slot
Material Conversion - Selected Objects
Explore Scene Folder
Octane Preferences
Add Octane Preset helper
Open scene AOV Settings
Set Octane as Renderer

Figure 1: Octane Menu - Octane Live DB

3 Render Setur	p: OctaneRender 2020.1.4 - 10.14 — 🗌	×
Target:	Production Rendering Mode	
Preset:	No preset selected	
Renderer:	OctaneRender 2020.1.4 - 10.14 🔹 Save File	
View to Render:	Quad 4 - Perspective	• 6
Common Kernel	Camera Devices Tools Support Account Render El	ements
* Live DB		
LocalDB directory		
Imported texture	es pati	1)
Open LiveDB	8 Refresh LiveDB Explore LocalDB Explore Text	ures
Material Con	verter	
Octane expo	rt	
Export setting	ngs	
1.9 version s	upport	
🕴 User Global F	Preferences	

Figure 2: Accessing the LiveDB from the Render Setup window

Many of the materials contain texture maps. 3ds Max cannot store these texture maps within a scene, so it saves the texture maps to disk under a specified folder and adds the material name to the path. You can customize the path as shown in Figure 3.

3 Render Setu	p: OctaneRender 2020.1.4 - 10.14 — 🗌	×
Target:	Production Rendering Mode	
Preset:	No preset selected	
Renderer:	OctaneRender 2020.1.4 - 10.14 Save File	
View to Render:	Quad 4 - Perspective	8
Common Kernel	Camera Devices Tools Support Account Render Elemen	ts
▼ Live DB		
LocalDB directory	y Etilevisite subscription at a set in a	
Imported texture	es pati	
Open LiveD	B Refresh LiveDB Explore LocalDB Explore Textures	
Material Con	iverter	
Octane expo	ort	
Export setting	ngs	
1.9 version s	support	
• User Global I	Preferences	

Figure 3: Setting the path where LiveDB stores Texture maps

To use a **Material**¹ in the LiveDB, right-click on the material thumbnail and choose **Import** (figure 4). You can access the imported material in the **Sample Slots** of the Slate Material Editor window.

¹The representation of the surface or volume properties of an object.

Figure 4: Import option

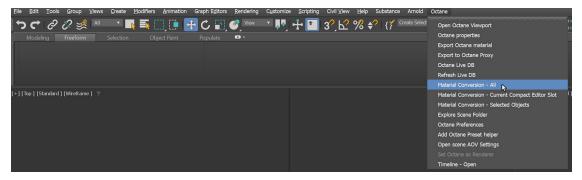
Refresh LiveDB

This button provides a quick refresh/update for LiveDB.

<u>File Edit To</u>	ools <u>G</u> roup	Views	Create	<u>M</u> odifiers	Animation	Graph Editors	<u>R</u> endering	Customize	Scripting	Civil View	Help	Substance	e Arnold	Octane
うつ 0	లి 🗘 క్ర	<u>8</u> All		N 📑 []] 🗈 🤞	🗗 🗘 🛃	View	- -	÷ 🚺	3 [°] .₽ [°]	%	? {}		Open Octane Viewport
Modeling							D •							Octane properties
														Export Octane material
														Export to Octane Proxy
														Octane Live DB
														Refresh Live DB
														Material Conversion - All
[+] [Top] [Stand	lard] [Wirefra	me] 🝸												Material Conversion - Current Compact Editor Slot
														Material Conversion - Selected Objects
														Explore Scene Folder
														Octane Preferences
														Add Octane Preset helper
														Open scene AOV Settings
														Set Octane as Renderer
														Timeline - Open

Figure 1: Octane Menu - Refresh Live DB

Material Conversion - All


There may be situations where you need to convert **Materials¹** from other render engines to OctaneRender[®] materials in order for the materials to render in OctaneRender for 3ds Max[®]. To do this, click on the **Octane** menu, then click on the **Material² Conversion - All** menu item (Figure 1). You can also go to the **Render**

45 — The Octane Menu

 $^{{}^{1}\!\}mathsf{A}$ set of attributes or parameters that describe surface characteristics.

²The representation of the surface or volume properties of an object.

Setup window, then click on the **Tools** tab, followed by clicking on the **Material Converter** rollout, then clicking the **Convert All** button (Figure 2).

Figure 1: Using the Material Conversion - All to convert other Materials and light sources to OctaneRender

Target:		Rendering Mode	*	Reno	ler						
Preset:											
Renderer:	OctaneRend	der 2020.2.3 - 11.	09 🔻	Save File							
View to Render:	View to Render: Quad 4 - Perspective										
Common Kern	nel Camera	a Devices T	ools Support	Account Re	ender Elements						
* Live DB											
LocalDB dire	ectory	C: \Users \tchen \Ar	pData\Roaming\()ctaneRender \oc	alD						
Imported to	extures patl	P:\Projects\Amboo	cStudio\01_Zero0)ne\3D\max\mate	ria						
Open I	LiveDB	Refresh LiveDB	Explore LocalD	B Explore Tex	tures						
* Material Con	verter										
Conve	F G M M m	olorCorrectTex alloffTex iradientRamp lentalArchDesign lixTex IVRav2SidedMtl Convert Scene m	aterials Con	vert selected obje	↓ ects						
Compact N	Aaterial Editor	Only:									
Convert A	All Slots Materi	ials	Convert Current	Slot Material							
Conversion	status:										
Enable bak	e composite m	naterial			×						
Enable bak	e other unsup	ported			✓						
Baked text	ures location		Current ma	ax file folder							
Octane expo	ort										
Export setting	ngs										
▶ 1.9 version s	upport										

Figure 2: Using the Convert All button in the Render Setup window to convert Materials and lights to OctaneRender format

Material Converter Parameters

Enable Bake Composite - Bakes 3ds Max Material composites into a single Texture that is compatible with OctaneRender.

Enable Bake Other Unsupported - Bakes Material composites designed with other render engines, such as Vray. However, the baked OctaneRender result may require additional tweaking, depending on the render engine.

Baked Textures¹ Location - Determines the location to save the baked textures.

The following rendering (figure 3) was completed using VRay. The scene uses a VRay Light and a VRay Material with the VRay Dirt texture connected to the Vray Material's **Diffuse**² map slot (figure 4).

Figure 3: A teapot render using VRay

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

48 — The Octane Menu

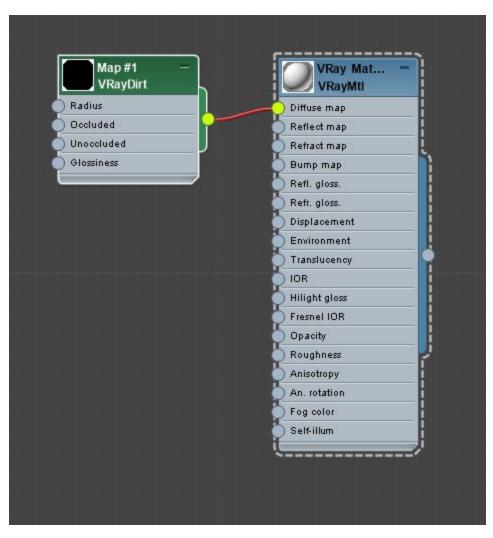


Figure 4: The VRay material network in the Slate Material editor

Once the scene is switched over to the OctaneRender engine, the VRay material in the Slate Editor should not be affected. After clicking on the **Material Conversion - All** menu item, the VRay Material converts to an OctaneRender **Diffuse material**¹ with an OctaneRender Dirt texture replacing the VRay Dirt texture. The VRay light also converts to an OctaneRender light source. Certain Objects, such as light sources, may need adjustments once the conversion process is complete.

¹Used for dull, non-reflecting materials or mesh emitters.

Material Conversion - Material Editor Current

<u>File Edit Tools Group Views Cr</u>	reate Modifiers Animation Graph Editors	<u>Rendering</u> Customize <u>S</u> cripting	Civil View Help Substance Arnold	Octane
	💌 📑 🧱 🛄 🛄 🔂 🕹 😭 lection Object Paint Populate	C Vew • 10 + 11	3 [°] ,	Open Octane Viewport
+ [Top] [Standard] [Wireframe] ⊤				Material Conversion - Sument Compact Editor Slot Material Conversion - Selected Objects Explore Scene Folder Octane Preferences Add Octane Preset helper Open scene AOV Settings Set Octane as Renderer Timeline - Open

Similar to Material¹ Conversion - All, but only convert materials in the Material Editor.

Figure 1: Using the Material Conversion - Material Editor Current

Material Conversion - Selected Objects

Similar to Material² Conversion - All, but only converts selected Objects.

Eile	Edit	Tools	Group	⊻iews	<u>C</u> reate	<u>M</u> odifiers	Animation	Graph Editors	Rendering	Customize		Civil ⊻iew		Substance		Octane
_			i? 🕺					B C 🗊		· .	÷	3°, ₽5	% \$? { }	ireate Select	Open Octane Viewport
	Modelir		Freeform		Selection	Obj	ect Paint	Populate	0 •							Export Octane material Export to Octane Proxy Octane Live DB
																Refresh Live DB Material Conversion - All
(+) (T	op][Sta	andard]	[Wireframe	≥] ▼												Material Conversion - Current Compact Editor Slot ¹ . Material Conversion - Selected Objects Explore Scene Folder
																Octane Preferences Add Octane Preset helper
																Open scene AOV Settings Set Octane as Renderer
																Timeline - Open

Figure 1: Using the Material Conversion - Selected Objects

Explore Scene Folder

¹The representation of the surface or volume properties of an object.
²The representation of the surface or volume properties of an object.

This quickly provides access to the directory of the current scene.

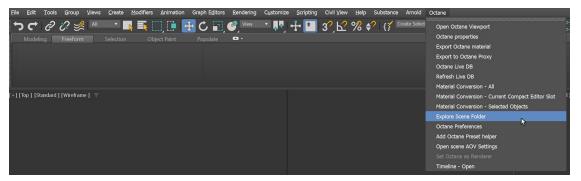


Figure 1: Explore Scene Folder

Octane Preferences Setting

The **Octane Preferences Setting** window contains a large list of parameters and settings related to OctaneRender[®] within 3ds Max[®]. The plugin lets you control and streamline how it handles object data generated by third-party applications and other OctaneRender-supported plugins. These settings include access to tools like OctaneRender's log files and related folders, access to settings used for conversions, and toggle features for troubleshooting. You can access the User Global Settings from the **Octane** menu (Figure 1), or the **Tools** tab in the **Render Setup** window (Figure 2).

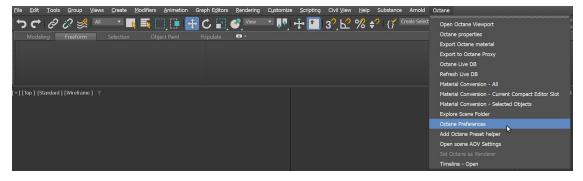


Figure 1: Accessing the User Global Settings from the Octane menu

🔝 Render Set	etup: OctaneRender 2023.1 - 14.03 —	\times								
Target:	Production Rendering Mode Render									
Preset:	No preset selected									
Renderer:	OctaneRender 2023.1 - 14.03 Save File									
View to Render:	: Quad 4 - Perspective	•								
	Kernel Camera Devices Tools Support Account Rende	er Elements								
► Live DB										
Material Co										
Octane exp										
Export sett										
1.9 version										
 Octane Pre 	elerences									
	Open Octane Preferences									
Tr	roubleshooting									
	Open OCIO issue Resolver									
1	Open Timeline issue Resolver									
	Explore Scene Folder									
	Explore Project Folder									
	Explore 3dsMax Folder									
	Explore Octane Log Folder									
	Explore Octane Preferences Folder									
	Open Log Window									
	Reset Octane Menu									

Figure 2: Accessing the Octane Preferences from the Tools tab

Set Octane As Renderer

The **Set Octane As Renderer** option activates the OctaneRender^(R) engine in the **Render Setup** window as the production renderer (figure 1).</sup>

File Edit Tools Group Views O	Create Modifiers Animation Graph Editors	Rendering Customize Scripting	Civil View Help Sub	ostance Arnold	Octane
ንር ራ ራ 🕺 💻	💽 🗅 🔂 🛄 🛄 🖉 🖉 🖉	🥙 💴 💌 👫 🚹	3? ┟? % €?	Create Select	Open Octane Viewport
	election Object Paint Populate	0.			Octane properties
					Export Octane material
					Export to Octane Proxy
					Octane Live DB
					Refresh Live DB
					Material Conversion - All
[+] [Top] [Standard] [Wireframe]					Material Conversion - Current Compact Editor Slot
					Material Conversion - Selected Objects
					Explore Scene Folder
					Octane Preferences
					Add Octane Preset helper
					Open scene AOV Settings
					Set Octane as Renderer
					Timeline - Open

Figure 1: The Set Octane As Renderer option from the Octane menu

OctaneRender[®] Viewport

The **Viewport** is an updating progressive rendering window. The viewport updates changes to material and light parameters without reloading the scene onto the **GPU**¹. If transformations (move, scale, rotate) are made to the scene geometry, including lights, then the viewport needs to refresh by reloading geometry onto the GPU in order to show these changes. You can access the OctaneRender Viewport from the **Octane Menu** (Figure 1) or **Render Setup** window (Figure 2).

File Edit Tools Group Views Create Modifiers Animation	Graph Editors Rendering Customize Scripting	Civil View Help Substance Arnold	Octane
う 🗗 🔗 🖉 💻 🗖 📑 🛄 🗊 🖻	🕀 🖒 🔝 🥝 View 📑 📭 🕂 🞦	3? 12 % \$? {} ^{Create Select}	Open Octane Viewport
Modeling Freeform Selection Object Paint	Populate 🗳 🕶		Octane properties
			Export Octane material
			Export to Octane Proxy
			Octane Live DB
			Refresh Live DB
			Material Conversion - All
[+] [Perspective] [Standard] [Default Shading] 🔻			Material Conversion - Current Compact Editor Slot
			Material Conversion - Selected Objects
			Explore Scene Folder
			Octane Preferences
			Add Octane Preset helper
			Open scene AOV Settings
			Set Octane as Renderer
			Timeline - Open

Figure 1: Accessing the OctaneRender Viewport from the Octane Menu

54 — OctaneRender® Viewport

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

3 Render Setu	o: Octane	Render 20	20.1.4 -	10.14			×		
Target:	Productio	Production Rendering Mode Render							
Preset:	No preset selected								
Renderer:	OctaneRender 2020. 1.4 - 10. 14 🔹 Save File								
View to Render:	Quad 4 - Perspective								
Common Kernel	Camera	Devices	Tools	Support	Account	Render	Elements		
Render View Settings OctaneRender [™] for use with Autodesk® 3ds max® Design Software @ otoy									
		Open Octa	neRende	r viewport					
Use window resol	ution		Us	se viewpor	t backgrou	nd			
Use production re	solution		AL	utoupdate	movable pr	оху	~		
Render width		00 \$	Re	efresh time	(ms)				
Render height	6	00 \$	Qu	uick mode			~		
Image aspect		.0 \$							
Lock image aspec	t		Er	able stats	in viewpor	t	~		
Render statistic	customizat	tion							
Samp/pix	*	Time ela	ps/total	~	Textur	es	~		
Samp/sec	~	Time ela	ps/left	~	Memor	y	~		
Render size	~	Zoom		~	Poly/o	bjects	×		
• Render Setti	* Render Settings								

Figure 2: Accessing the OctaneRender Viewport from Render Setup

OctaneRender® Viewport Buttons

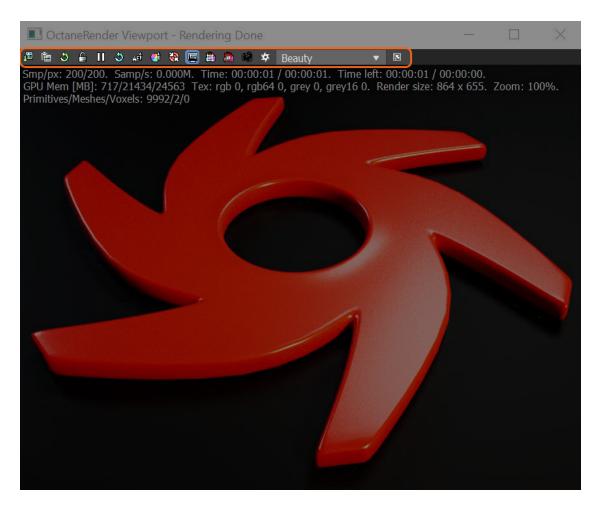


Figure 1: Viewport Buttons

Save Image - Saves the current render from the OctaneRender Viewport to disk.

Port To Max Framebuffer - Sends the current render to the 3ds Max[®] frame buffer (render window).

Quick Update Mode - When disabled, OctaneRender tests all objects every 5 ms for changes. This can get very slow when there are many Objects. When you enable this mode, changes are detected automatically using 3ds Max messages, making changes much more responsive.

Update Render Geometry - Reloads the scene geometry onto the **GPU**¹. Click this button if you add or change scene elements while the OctaneRender Viewport is open. Otherwise, scene geometry reloads onto the GPU whenever you close and reopen the Viewport.

Lock Update - Locks the Viewport so it does not update the render even if you edit scene elements, such as moving the camera or adjusting materials and lights. However, the Viewport continues to render the scene.

Pause Render - Similar to the Lock Update button except it also pauses the scene's progressive rendering.

Rebuild Scene - Rebuilds all the scene elements, including lighting and materials.

Focus Picker - Lets you sample an area of the Viewport as the render's focus point. Using this feature will automatically disable the camera's **Auto-focus** and set **Focus depth** to the proper value.

White Balance Picker - Samples an area in the Viewport to determine the render's white balance.

Align Image - Re-centers the rendering if you zoom in or reposition the render.

Lock Resolution - Locks the rendering resolution to the size and proportions of the render window.

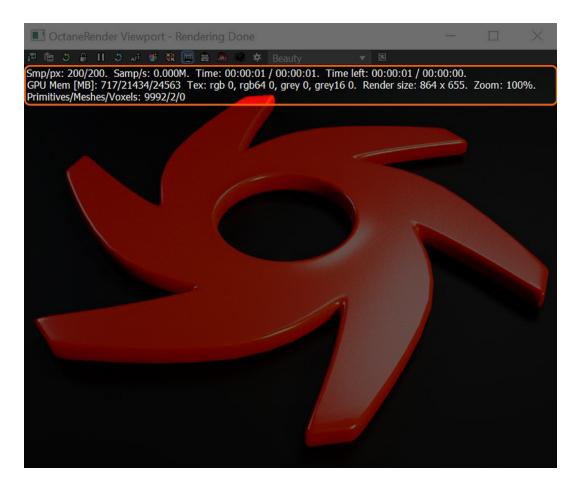
Region Render - Limits the render window to render just the area included in the region selection box.

Film Region - Lets you move the red box corners to adjust the render boundaries. The renderer displays black outside of the rectangle.

Lock Camera - Locks the camera for the 3ds Max Viewport that you want to render. If you disable this function, 3ds Max restarts the render each time you select a different 3ds Max Viewport.

Octane Node Viewer - Opens the OctaneRender **Nodegraph Editor**. Primarily used to view and troubleshoot the node network translated to Octane. Changes cannot be saved.

Beauty


Passes Dropbox - Lets you select and display any render passes (AOVs) enabled in the AOV Scene Settings window.

Select Multiple Passes - Lets you add Octane supported render passes. You can display the passes by using Passes Dropbox.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

57 — OctaneRender® Viewport

OctaneRender® Viewport Info

Figure 1: Render Scene Information

Information regarding the render includes:

Smp/px

- The number of tone mapped samples already visible
- The maximum samples to be rendered.

Samp/s

• Render speed

Time

58 — OctaneRender® Viewport

- Time elapsed
- Estimated time for completion

Time Left

- Time elapsed
- Estimated time left for completion

GPU¹ Mem [MB]

- · Shows the GPU memory used by the current process
- Total usable device memory, excluding memory used by other application running concurrently.
- Total Memory size available. If running multiple GPUs with different memory sizes, the system will limit the total memory access to the GPU with the least amount of VRAM.

PSP (Work in Progress)

• Display the amount of GPU Peer to Peer memory pool used.

CPU Mem [GB]

- Shows the Out of Core memory used.
- The maximum memory allocated to Out of Core. You can set this amount in Render Setup.

Tex

- rgb Shows the number of LDR² color textures
- rgb64 Shows the number of HDR color textures
- grey Shows the number of LDR greyscale textures
- grey16 Shows the number of HDR greyscale textures

Render size

• Current render resolution

Zoom

• Display the image zoom amount. Does not affect render or output resolution.

Primitives/Meshes/Voxels

- Shows the number of triangles.
- Shows the number of mesh objects.
- Shows the number of voxels.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process. ²Image formate that have 8 bits per color channel such as the common image formate 1PEC. PNC. CIE among

²Image formats that have 8 bits per color channel such as the common image formats JPEG, PNG, GIF among others.

59 — OctaneRender® Viewport

Material Editor

All materials and textures will be covered using **3ds Max**[®] **Slate Material¹ Editor**(figure 1) as opposed to the **Compact Material Editor**. When using Octane, Octane-specific materials and textures should be used since these materials are optimized for use with the Octane render engine.

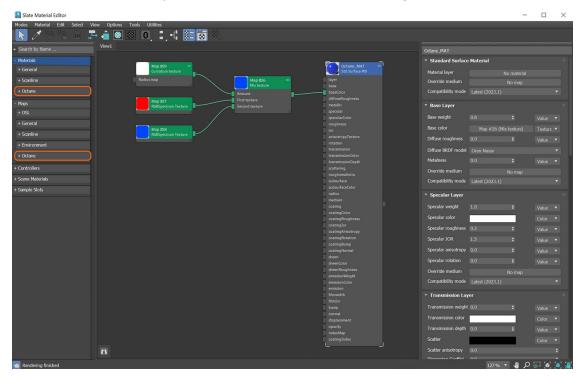


Figure 1: Slate Material Editor

Materials

There are 14 types of materials available in OctaneRender[®]:

- Clipping Used to cut one shape from another much like a Boolean subtraction function.
- **Composite** Mixes several **Materials**² using masks.

¹The representation of the surface or volume properties of an object. ²A set of attributes or parameters that describe surface characteristics.

60 — Material Editor

- Diffuse¹ Used for dull, non-reflecting Materials or Mesh emitters.
- **Glossy²** Used for shiny Materials such as plastics or metals.
- **Hair** A dedicated shader with real-world physical characteristics that describe hair interaction with light.
- Layered A system that uses dedicated material layer types found in the Material³ Layers roll-out to construct complex surfaces.
- Metallic Similar to the Glossy material⁴, except by default it exhibits more metal-like characteristics.
- **Mix** Mixes any two Material types.
- **Portal**⁵ Designates openings in scenes to allow the render kernel to better sample light from those areas. For more information, see the Lighting topic in this manual.
- **Shadow Catcher⁶** A dedicated material that captures shadows.
- **Specular**⁷ Used for transparent Materials such as glass and water.
- **Standard Surface** This material closely aligns with the Autodesk Standard Surface shader specification for cross-application interoperability.
- Toon Designs surfaces that look hand-drawn.
- **Universal** Integrates more closely with **PBR**⁸ workflows.

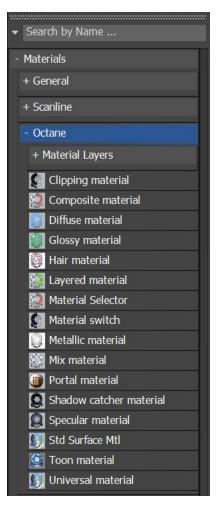
Additionally, the **Material Selector** and the **Material Switch** nodes can be accessed from this menu. These node types are also covered in this section.

You can access the OctaneRender materials by expanding the **Octane** rollout in the **Materials** section of the **Slate Material Editor** (figure 1).

³The representation of the surface or volume properties of an object.

⁴Used for shiny materials such as plastics or metals.

⁵A technique that assists the render kernel with exterior light sources that illuminate interiors. In interior renderings with windows, it is difficult for the path tracer to find light from the outside environment and optimally render the scene. Portals are planes that are added to the scene with the Portal material applied to them.
⁶The Shadow Catcher can be used to create shadows cast by objects onto the surrounding background


imagery. The shadows cast are not limited to simply a ground plane but can be cast onto other surfaces of varying shapes.

⁷Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

⁸A contemporary shading and rendering process that seeks to simplify shading characteristics while providing a more accurate representation of lighting in the real world.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

Figure 1: Accessing the Octane-specific materials in the Slate Material Editor

а

Composite Material

The **Composite** material node mixes several materials using masks (Figure 1). This is much cleaner than using several chained **Mix** materials. If a mask is not connected, the material's **Opacity** is used. The first material pin becomes the base layer.

Slate Material Editor		- 🗆 X
Modes Material Edit Select View Options Tools Utilities		
📘 🖊 🍃 🐂 🏛 🎩 🤹 💌 💽 🗄	, 4 🔚 🖸 🦄	
View1		Material #7 🔻
		Octane Material Parameters
	Octane Logo MAT —	Displacement No map
	Giossy material	
	Layer diffuse	Custom AOV Channel All 💌
	specular	Add Input Remove Input
	roughness rotation	Material 1 enabled 🖌
	filmwidth sheen	Material 1 Octane Logo MAT (Glossy material) Material 1 mask No man
	sheenRoughness	
	opacity bump	Material 2 enabled Material #6 (Glossy material)
- ALLER -	normal	Material 2 mask Map #35 (Checks texture)
Map #37 (3D transformation)	displacement	
	Material #7	-
Search by Name	Material #6 - Composite material	
- Materials	Glossy material Comp. mtl #1 Layer Comp. mtl #2	
+ General	diffuse Displac.	
+ Scanline	specular Mask Tx #1: roughness Mask Tx #2:	
- Octane	rotation	
+ Material Layers	filmvaddth sheen	
Clipping material	sheenRoughness	
Composite material	opacity bump	
🗾 Diffuse material	normal displacement	
Hair material	usparement	
Layered material		
Material Selector	Map #35 — Checks texture	
Material switch	Map #37	
💭 Metallic material	30 transformation projection	
Mix material Portal material		
Shadow catcher material		
Conveder material		
C Rendering finished		127 % 👻 🤚 🔎 💭 🐼 🌒

Figure 1: Two Glossy¹ materials connected to a Composite material node with a Checks texture as the mask

Composite Material Parameters

Displacement² - Displacement for the Composite **Material**³ surface.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Add Input - Adds a new Material input to the end of the Node.

Remove Input - Removes the last Material input.

¹The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

²The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

³The representation of the surface or volume properties of an object.

63 — Material Editor

Material 1, 2, ... - The Material inputs. When several materials are used, the first material pin becomes the base layer.

Material 1, 2....Mask - Controls the material's opacity using an input map. If a mask is not connected, then $OctaneRender^{(R)}$ uses the material's opacity.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Diffuse Layer

The layered material system lets you construct complex materials that consist of a base layer and up to eight **Material² Layers**. The layers are based on components used in previous Octane materials. Using this set of unique layers, OctaneRender[®] now lets you recreate complex materials in a physically-based manner, as opposed to manually **mixing materials**³ together.

The **Diffuse⁴** layer is used for dull, non-reflective materials. See the **Diffuse Material** topic in this manual for more information. Material layers can connect to the **Layered Material**, **Layer Group**, **Material Layer Switch**, or a **Material Layer** pin on the standard Octane materials (Figure 1).

³Used to mix any two material types.

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

²The representation of the surface or volume properties of an object.

⁴Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Slate Material Editor						- 0	×
Modes Material Edit Select View Options Tools Utilities						_	
💽 🖉 🎲 🏠 🗰 🎩 🍙 🛛 🖸 🔍 🗒 🗮 👹	5 🔨						
View1				Material #8			
				Octane Material	Laver Parameters		
				Enabled	v		
				Diffuse			
				Transmission		None	
	Material #8 -			BRDF model			- -
	Diffuse layer			Roughness	0.0 :		
	diffuse					None	
	transmission		Material #21 🛛 🗕	Bump height			
	roughness bump		Diffuse material				Ļ.
Material #20 (Layer group)	normal	Material #20 -	/ layer diffuse				
Search by Name	opacity	Lay, mtl #1	transmission	Compatibility mode			¥
- Materials	j	Lay. mtt #1					
+ General	Material #22 -						
+ Scanline	Material #22 - Specular layer		opacity bump				
- Octane			normal				
- Material Layers							
Diffuse layer	roughness rotation	_/					
Material layer switch	IndexMap						
Metallic layer							
Sheen layer							
Clipping material	normal. opacity						
Composite material							
👿 Diffuse material							
Glossy material							
😸 Har material							
Material Selector							
Material switch							
Hetallic material Mo material							
Portal material							
Rendering finished						∎ 0 © ````	

Figure 1: Diffuse and Specular¹ layers are mixed using the Layer Group node and connected to the Layer pin on a standard Octane Diffuse material²

Diffuse Layer Parameters

Enabled - Enables or disables this node in a material layer network.

Diffuse - The layer's diffuse color.

Transmission³ - The layer's transmission color. This can be used for thin translucent objects.

BRDF Model - Provides three models for diffuse light reflectance. Lambertian reflects light equally in all directions and does not support roughness. The Octane option creates a sheen effect much like velvet. And, the Oren-Nayar option behaves more like clay.

Roughness - The Diffuse layer's roughness. High values simulate very rough surfaces like sandpaper or clay.

Bump - Simulates a relief by using a Greyscale texture interpreted as a Height map for the layer.

Bump Height - Provides added control over bump maps by adjusting the height or strength of the attached bump map.

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

²Used for dull, non-reflecting materials or mesh emitters.

³A surface characteristic that determines if light may pass through a surface volume.

65 — Material Editor

Normal - Distorts layer normals using an RGB image.

Layer Opacity - Controls the layer opacity with a Greyscale texture.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Diffuse Material

The **Diffuse¹** material is used for dull, non-reflecting materials or light-emitting surfaces (figure 1). This material type simulates a rough surface that reflects light back into the environment in all directions. **Specular**² highlights and reflections do not appear on diffuse surfaces.

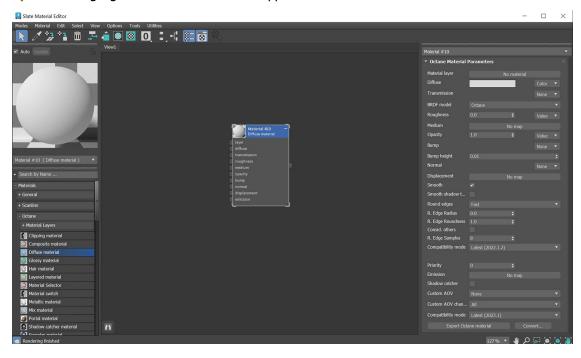


Figure 1: The Diffuse material³

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

³Used for dull, non-reflecting materials or mesh emitters.

Diffuse Material Parameters

Material¹ Layer - Adds a Material Layer above the base material. See the Material Layers topic in this manual for more details.

Diffuse- Provides color to the material. This is also known as base color or albedo. You can set Diffuse color by using a value, or connecting a **Procedural** or **Image** texture.

Transmission²- Uses a color or texture that is mixed with the material's Diffuse color, and is most noticeable in areas affected by indirect lighting.

BRDF Model - Provides three models for diffuse light reflectance. Lambertian reflects light equally in all directions and does not support roughness. The Octane option creates a sheen effect much like velvet. And, the Oren-Nayar option behaves more like clay.

Roughness - Determines the spread of highlights on the surface. A high Roughness value or light color can simulate very rough surfaces such as sand paper or clay. You can set Roughness using a value, or by connecting a Procedural or Image texture. A roughness value of **1** (white color) creates a diffuse sheen along the edges of the surface, simulating the look of crushed velvet.

Medium- OctaneRender[®] has various types of mediums to create translucent surfaces:

- Absorption³ Medium Produces the appearance of a material that absorbs light while passing through a surface. The resulting color depends on the distance that light travels through the material. For more information, see the Mediums⁴ topic in this manual.
- **Scattering⁵ Medium** Similar to the Absorption medium, but with an additional option for simulating subsurface scattering. Subsurface scattering is the phenomena that gives human skin and similar organic surfaces their characteristic glow under certain lighting conditions. It's a major component for creating the look of realistic skin. For more information, see the **Mediums** topic in this manual.

¹The representation of the surface or volume properties of an object.

²A surface characteristic that determines if light may pass through a surface volume.

³Defines how fast light is absorbed while passing through a medium.

⁴The behavior of light inside a surface volume described by scatter, absorption, and transmission characteristics.

⁵Defines how fast light gets scattered when traveling through the medium.

- Volume Medium¹ Adds color and other qualities to a VDB² file. VDBs are a generic volume format for creating effects such as smoke, fog, vapor, and similar gaseous objects. VDBs can consist of a single frame, or an animated sequence.
- **Random Walk** A newer variant of subsurface scattering that utilizes a stochastic or random process for the scattering of light through an object. This provides the most realistic result when rendering scatter volumes.
- **Std Volume Medium** This provides volume medium options with comprehensive controls for adjusting volume, scatter, transparency, emission, and temperature parameters based on imported VBD grid data.

Opacity - Determines what parts of the surface are visible in the render. Dark values indicate transparent areas, and light values indicate opaque areas. Values in-between light and dark indicate semi-transparent areas. You can lower the Opacity value to fade the object's overall visibility, or you can use a Texture map to vary the opacity across the surface. For example, if you want to make a simple polygon plane look like a leaf, you would connect a black-and-white image of the leaf's silhouette to the **Diffuse** shader's **Opacity** channel. When using an Image texture map, use a **Grayscale** image node for black-and-white images, to load an image for setting the transparency. To invert the transparency regions, select the image's **Invert** checkbox.

Bump - Creates fine details on the Material's surface using a procedural or image texture. When you connect a **Greyscale** texture to this parameter, light areas of the texture look like protruding bumps, and dark areas look like indentations.

Bump Height - Provides added control over bump maps by adjusting the height or strength of the attached bump map.

Normal - Creates fine details on the surface. A normal map is a special type of image texture that uses red, green, and blue color values to perturb the surface's normals at render time, thus giving the appearance of added detail. They can be more accurate than bump maps, but require specific software such as ZBrush[®], Mudbox[®], Substance Designer, XnormalTM, or others to generate. Note that normal maps take precedence over bump maps, so you cannot use a normal map and a bump map at the same time.

¹A shading system designed to render volumes such as smoke and fog.

²Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

Displacement¹ - Adjusts the surface vertices' height at render time using an Image texture map. Displacement maps differs from bump or normal maps in that the geometry is altered by the texture, as opposed to creating details. Displacement mapping is more complex than using a bump or normal map, but the results are more realistic, in particular along the surface's silhouette. Displacement mapping is covered in more detail under the **Texture** topic in this manual.

Smooth - Smooths the transition between surface normals. If this option is disabled, the edges between the polygons of the surface are sharp, giving the surface a faceted look.

Smooth Shadow Terminator - If enabled, self-intersecting shadows are smoothed according to the polygon's curvature.

Round Edges - Rounds off geometry edges by using a shading effect instead of creating additional geometry. It's best used for rounded edges that will appear small in the final render. The **Fast** mode uses the rounding method introduced in OctaneRender[®] v3. The **Accurate** mode produces better-looking results, but may be slower. Accurate mode can select the affected edges by using the **Concave Only** or **Convex Only** options.

Rounded Edges Radius - Define the size of the rounded edge by radius.

Rounded Edges Roundness - Controls the rounded edge's shape. A value of 1 is completely round, while 0 is a chamfer.

Consider Other Objects - Controls how rounded edges are applied to different objects. When enabled, intersections between different objects are rounded. When disabled, only the current object is considered.

Rounded Edge Samples - Set samples for rendering edges.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1.2). The 2022.1.1 compatibility mode will always factor in the edge sharpness instead of just when the material smooth flag is enabled.

Priority - Used to resolve the ambiguity in overlapping surfaces, the surface priority control allows artists to control the order of preference for surfaces. A higher number suggests a higher priority for the surface material, which means it is preferred over a lower priority surface material if a ray enters a higher priority surface and then intersects a lower priority surface while inside the higher priority surface medium.

Emission - Creates a surface that emits light (also known as a **Mesh** emitter). To use this option, connect a Diffuse material's Emission input to either a **Blackbody** or **Texture** emission node. These nodes are covered in more detail in the **Texture** topic, and in the **Mesh Emitters**² topic under the **Lighting** category in this manual.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

²The ability for a surface to emit illumination usually described by a Black Body or Texture emission type.

Shadow Catcher¹ - Converts the material into a shadow catcher. When it is active, the surface is visible in the areas that are in shadow, and all other areas are transparent in the render.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**², the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Glossy Material

The **Glossy³** material is used for shiny materials such as plastics or metals (figure 1). It is possible to simulate metals with the **Glossy** material, however, the **Metal** material is preferable because it renders metals more accurately.

¹The Shadow Catcher can be used to create shadows cast by objects onto the surrounding background imagery. The shadows cast are not limited to simply a ground plane but can be cast onto other surfaces of varying shapes.

²The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

³The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

Slate Material Editor		- 🗆
odes Material Edit Select View Options Tools 🛛	unines \$_+{} } 	
Auto Update		Material #2
Auto Opdate D0		Octane Material Parameters
		Material layer No material
		Diffuse Color
	Material #2 -	Specular 1.0 \$ Value
	Glossy material	Diffuse BRDF model Lambertian
	layer	BRDF model Octane
	diffuse	Roughness 0.063 \$ Value
	specular roughness	Anisotropy 0.0
	rotation	Rotation 0.0 ¢ Value
	filmwidth	Spread 0.5
	sheen	
	sheenRoughness	
	opacity bump	
	normal	Sheen None
	displacement	Sheen Roughness 0.2 Value Value Value Value Value Value Va
erials		Index of refraction 1.5
eneral		Allow caustics
anline		Opacity 1.0 + Value •
tane		Bump None Y
Material Layers		Bump height 0.01
Clipping material		Normal None
Composite material		Displacement No map
Diffuse material		Smooth 🖌
Glossy material		Smooth shadow t
Hair material		Round edges Fast
Layered material Material Selector		R. Edge Radius 0.0 \$
Material switch		R. Edge Roundness 1.0 \$
Metallic material		Consid. others
Mix material		R. Edge Samples 8 💠
Portal material		Compatibility mode Latest (2022.1.2)
Shadow catcher material		
Specular material		Priority 0 ¢
Std Surface Mtl		Custom AOV None
Toon material		Custom AOV chan All
		Compatibility mode Latest (2023.1)
aps OSL		
Rendering finished		160 % 🔻 📲 🔎 🐼 😭

Figure 1: The Glossy material¹ and its associated parameters

Glossy Material Parameters

Material² Layer - Adds a Material Layer above the base material. See the Material Layers topic in this manual for more details.

Diffuse³ - Gives color to the material. In computer graphics, this is referred to as base color or albedo. Diffuse color can be set by using the color picker, or by connecting a procedural or image texture.

¹Used for shiny materials such as plastics or metals.

²The representation of the surface or volume properties of an object.

³Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters. **Specular1** - Determines the intensity for Specular reflections on the surface. This parameter accepts color, values, or **Textures**². In most cases, specular highlights are white or colorless. However, to simulate metallic surfaces, you should tint the Specular color using a color similar to the Diffuse parameter, like the bright yellow-orange highlights seen on a polished copper kettle.

Diffuse BRDF Model - Provides three models for diffuse light reflectance. Lambertian reflects light equally in all directions and does not support roughness. The Octane option creates a sheen effect much like velvet. And, the Oren-Nayar option behaves more like clay.

BRDF Model - The BRDF (Bidirectional Reflectance Distribution Function) determines the amount of light that a material reflects when light falls on it. For glossy materials, you can choose from six BRDF models. Specific geometric properties (the micro-facet distribution) of the surface affects each BRDF, which describes the surface's microscopic shape (i.e. micro-facet normals) and scales the brightness of the BRDF's reflections (figure 2).

Figure 2: The various BRDF models available for specularity

Roughness - Determines how much the specular reflection spreads across the surface. In CG terminology, this is also known as reflection blur. A value of **0** simulates a perfect smooth reflective surface such as a mirror. Increasing the value simulates microfacets in the surface, which causes the reflective highlights to spread. For example, to create the look of worn plastic, increase the Roughness value. This parameter accepts a value or **Texture** map (**Procedural** or **Image**).

Anisotropy - Controls the material's reflectance uniformity. Reflectance changes based on surface orientation or rotation is anisotropic. If the reflectance is uniform in all directions and doesn't change based on the surface's orientation or rotation, then it is isotropic. This parameter's default value is **0**, which sets the metallic material as isotropic. Non-zero values mean the material exhibits anisotropic reflectance, where **-1** is horizontal and **1** is vertical.

Rotation - Controls the Anisotropy effect's orientation.

Spread - Determines the tail spread of the specular BSDF.

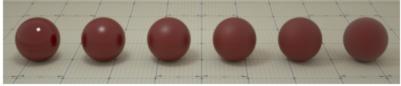
¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

²Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Film Width - Simulates the look of a thin film of material on the surface. This is useful when you want to create an effect like the rainbow colors that appear on an oil slick surface. Larger values increase the effect's strength.

Film IOR - Controls the film's Index of Refraction. Use this option to adjust the colors visible in the film.

Sheen - Applies a soft luster to a surface.


Sheen Roughness - Determines how the sheen spreads across the surface. Lower values create a sharp and narrow effect, and higher values spread the effect across a larger surface area.

Index Of Refraction - Determines the strength of reflections on the surface based on the Fresnel law. The Fresnel law describes the physical properties of light as it is reflected off of a surface at grazing angles. If Index of Refraction is set to a value higher than **1**, the reflection is strongest on the part of the surface that turns away from the viewer's angle (grazing angles), while the reflection appears weaker or less apparent on the parts of the surface perpendicular to the viewing angle. Since this is a physical phenomena, the result is a more real-istic-looking surface. If Index of Refraction is set to a value lower than **1**, then the Fresnel effect is disabled and the reflection color simply appears as a uniform color across the highlight. The color of the reflective highlight itself is determined by the color connected to the Specular channel.

In the following examples, the six balls have a Roughness of **0**, **0.2**, **0.4**, **0.6**, **0.8**, and **1.0** (left to right), and only the Specular value and Index of Refraction are modified for each rendered image:

specular = 1.0 index = 2.0 (strong Fresnel reflection)

specular = 0.3 index = 3.0 (very strong Fresnel reflection)

specular = 1.0 index = 1.5 (normal Fresnel reflection)

specular = 0.3 index = 0.0 (no Fresnel reflection)

specular = 1.0 index = 0.0 (no Fresnel reflection)

74 — Material Editor

Figure 3: Spheres rendered using different settings for Specular and Index

Allow Caustics - If enabled, the photon tracing kernel will create caustics for light reflecting or transmitting through objects with this material applied.

Opacity - Determines what parts of the surface are visible in the render. Dark values indicate transparent areas, and light values determine opaque areas. Values in-between light and dark create the look of semi-transparent areas. Lowering the opacity value lowers the object's overall visibility, and using a texture map varies the opacity across the surface. For example, if you want to make a simple polygon plane look like a leaf, connect a black-and-white image of the leaf's silhouette to the diffuse shader's Opacity channel.

Bump - Creates fine details on the material's surface using a procedural or image texture. When you connect a grayscale texture to this parameter, light areas of the texture look like protruding bumps, and dark areas look like indentations. You can adjust the bump map's strength by setting the **Power** or **Gamma¹** values on the image texture. These attributes are covered in more detail in the **textures** topic in this manual.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Creates fine details on the surface. A normal map is a special type of image texture that uses red, green, and blue color values to perturb the normals of the surface at render time, giving the appearance of added detail. They can be more accurate than bump maps, but requires specific software to generate.

Displacement² - Adjusts the surface vertices' height at render time using an image texture map. Displacement maps differs from bump or normal maps in that the geometry is altered by the texture, as opposed to creating details. Displacement mapping is more complex than using a bump or normal map, but the results are more realistic, in particular along the surface's silhouette. Displacement mapping is covered in more detail under the **Textures** topic in this manual.

Smooth - Smooths the transition between surface normals. If this option is disabled, the edges between the polygons of the surface are sharp, giving the surface a faceted look.

Smooth Shadow Terminator - If enabled, self-intersecting shadows are smoothed according to the polygon's curvature.

Round Edges - Rounds off geometry edges by using a shading effect instead of creating additional geometry. It's best used for rounded edges that will appear small in the final render. The **Fast** mode uses the rounding

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

²The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

method introduced in OctaneRender[®] v3. The **Accurate** mode produces better-looking results, but may be slower. Accurate mode can select the affected edges by using the **Concave Only** or **Convex Only** options.

Rounded Edges Radius - Define the size of the rounded edge by radius. Bevels the surface edges at render time without altering or subdividing the geometry. Using this option enhances object realism by eliminating sharp edges. The value refers to the rounded edge's radius. Higher values produce rounder edges.

Rounded Edges Roundness - Controls the rounded edge's shape. A value of 1 is completely round, while 0 is a chamfer.

Consider Other Objects - Controls how rounded edges are applied to different objects. When enabled, intersections between different objects are rounded. When disabled, only the current object is considered.

Rounded Edge Samples - Set samples for rendering edges.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1.2). The 2022.1.1 compatibility mode will always factor in the edge sharpness instead of just when the material smooth flag is enabled.

Priority - Used to resolve the ambiguity in overlapping surfaces, the surface priority control allows artists to control the order of preference for surfaces. A higher number suggests a higher priority for the surface material, which means it is preferred over a lower priority surface material if a ray enters a higher priority surface and then intersects a lower priority surface while inside the higher priority surface medium.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Hair Material

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

An updated hair material was implemented in OctaneRender[®] 2020 that improves hair rendering realism. The **Hair Material¹** parameters are focused on characteristics common with hair and fur strands (Figure 1). The hair material has its unique set of parameters, allowing for Albedo and Melanin/Pheomelanin coloring methods for hair, as well as multiple roughness parameters for different scattering behavior along a hair strand. Albedo mode is better for artificial hair fibers than Melanin and Phelomelanin, which is better for natural hair fibers.

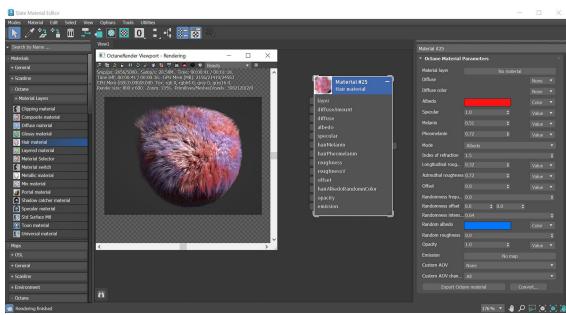


Figure 2: Hair Material parameters

Hair Material Parameters

Material Layer - Adds a Material Layer above the base material. See the **Material Layers** topic in this manual for more details.

Diffuse² - Adds an additional layer of color to the hair. This parameters is usually set to a value instead of a color, the color is set in the **Diffuse Color** parameter. The diffuse parameters are designed to be used when in **Albedo** mode.

Diffuse Color - Add an additional layer of color to the hair strands. The diffuse parameters are designed to be used when in **Albedo** mode.

¹The representation of the surface or volume properties of an object.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Albedo - The hair base color used when in Albedo mode.

Specular¹ - The hair specular or shininess color. This parameter only works when using **Albedo** mode.

Melanin - The quantity of pigment for the hair base color. This parameter only works when using **Melanin** + **Pheomelanin** mode.

Pheomelanin - The amount of redness in the hair strand. This parameter only works when using **Melanin** + **Pheomelanin** mode.

Mode - Determines whether to use the **Albedo** or the **Melanin/Pheomelanin** parameters to determine the hair color.

Index of Refraction - This parameter controls the level of the Fresnel effect on the specular reflection.

Longitudinal Roughness - Controls the roughness along the hair strand.

Azimuthal Roughness - Controls the roughness along a hair strand's cross section.

Offset - Scale offset on the surface of the hair. A value of 0 demotes perfectly smooth cylindrical hair. Increasing this value shifts the specular highlight away from a perfectly reflective direction.

Randomness Frequency - Controls the frequency of randomness on the hair for a more believable effect.

Randomness Offset - Works much like a seed value and offsets the randomness effect.

Randomness Intensity - Controls the intensity of the randomness on each hair strand.

Random Albedo - Specifies the target random albedo on the hair. This parameter will only work with the **Albedo** mode enabled.

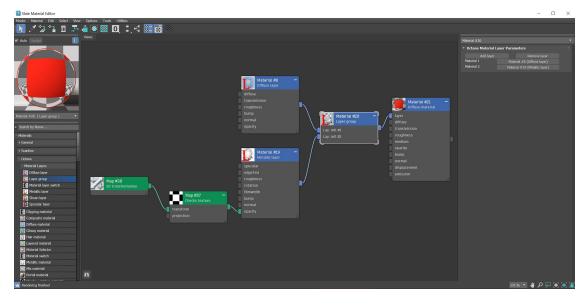
Opacity - Controls the transparency value of the hair using greyscale values.

Emission -Determines whether the hair material will function as an emission surface.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**², the Local DB, or the Live DB.


Convert - Provides options for converting this material to other Octane-specific material types.

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

²The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Layer Group

The **Layer Group** node can be used to add more than one **Material¹ Layer** type to a **Layered Material** node, a **Material Layer Switch** node, another **Layer Group** node, or the **Layer** input pin on standard Octane materials (figure 1). The layered material system lets you construct complex materials that consist of a base layer and up to eight Material Layers. The layers are based on components used in previous OctaneRender[®] materials.

Figure 1: A Diffuse² and a Metallic layer are mixed using the Layer Group node and a Checks texture

Layered Material

¹The representation of the surface or volume properties of an object.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

79 — Material Editor

The **Layered Material**¹ node constructs complex **Materials**² that consist of a base layer and up to eight **Material Layers**. You can create complex Materials in a physically-based manner, as opposed to manually **mixing Materials**³ together.

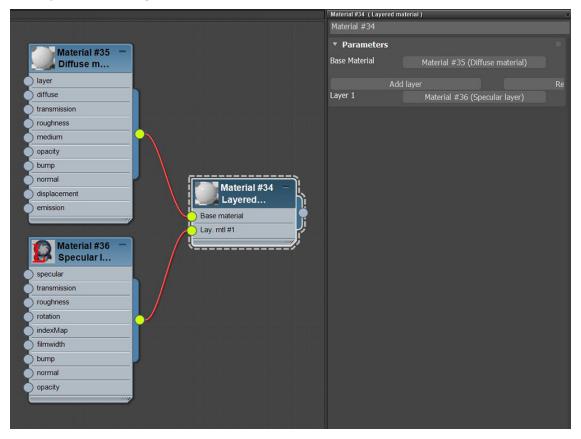


Figure 1: The Layered Material with a Diffuse material⁴ as the base Material, and a Specular⁵ layer as the Layer 1 input

¹The representation of the surface or volume properties of an object.

²A set of attributes or parameters that describe surface characteristics.

³Used to mix any two material types.

⁴Used for dull, non-reflecting materials or mesh emitters.

⁵Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

Layered Material Parameters

Add Layer - Adds a new Layer input to the end of the Node. You can add up to eight Layer inputs.

Remove Layer - Removes the last Layer input on the Node.

Base Material - The Material that sits below any additional Material Layers.

Layer 1 - 8 - The Material Layer inputs.

With the Layered material, you are given all Material Layers used in OctaneRender[®], letting you reconstruct pre-existing OctaneRender[®] Materials or your own uber-Material.

Metallic Layer

The layered material system lets you construct complex materials that consist of a base layer and up to eight **Material¹ Layers**. The layers are based on components used in previous Octane materials. Using this set of unique layers, OctaneRender[®] now lets you recreate complex materials in a physically-based manner, as opposed to manually **mixing materials**² together.

The **Metallic** layer is used for highly reflective materials that have colored reflections. See the **Metallic Material** topic in this manual for more information. Material Layers can connect to the **Layered Material**, **Layer Group**, **Material Layer Switch**, or a **Material Layer** pins on the standard Octane materials (Figure 1).

¹The representation of the surface or volume properties of an object. ²Used to mix any two material types.

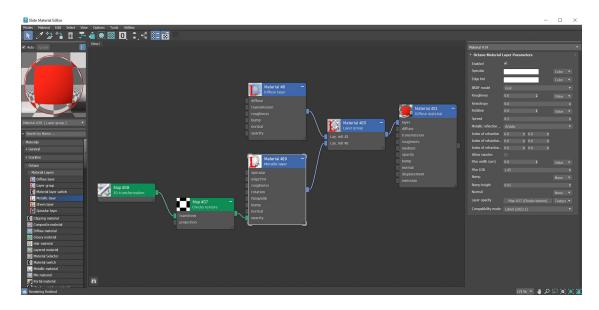


Figure 1: **Diffuse¹** and Metallic layers are mixed by using the Layer Group node and a Checks texture

Metallic Layer Parameters

Enabled - Enables or disables this node in a material layer network.

Specular² - The Layer's coating color.

Edge Tint - The color of the edges of the metal material, only used with Artistic and IOR+Color modes found under the Metallic Refl. Mode.

BRDF Model - The BRDF (Bidirectional Reflectance Distribution Function) determines the amount of light that a material reflects when light falls on it. For glossy materials, you can choose from six BRDF models. Specific geometric properties (the micro-facet distribution) of the surface affects each BRDF, which describes the surface's microscopic shape (i.e. micro-facet normals) and scales the brightness of the BRDF's reflections (figure 2).

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

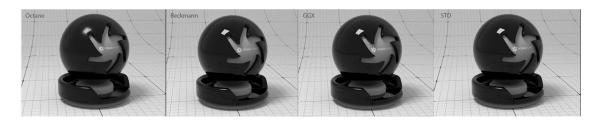


Figure 2: The various BRDF models available for specularity

Roughness - Adjusts how rough the Metallic layer looks.

Anisotropy - The Metallic layer's anisotropy. A value of **-1** is horizontal, while **1** is vertical. A value of **0** is isotropic.

Rotation - The Metallic anisotropic reflection's rotation.

Spread - Determines the tail spread of the specular BSDF.

 $\label{eq:metallic} \textbf{Metallic Reflection Mode} - \textbf{This changes how OctaneRender}^{\textcircled{R}} \textbf{ calculates reflectivity}.$

- Artistic Uses the Metallic color.
- **IOR + Color** Uses the Metallic color and adjusts the brightness using the IOR.
- RGB IOR Uses the three IOR values (for 650 nm, 550 nm, and 450 nm) and ignores the Metallic color.

Index Of Refraction - Complex-valued IOR ($n-k^*i$) controlling the specular reflection's Fresnel effect, where n = the refractive index and k = the attenuation or extinction coefficient. For RGB mode, the IOR for red light (650nm).

Index Of Refraction (Green) - For RGB mode, the IOR for red light (550nm).

Index Of Refraction (Blue) - For RGB mode, the IOR for red light (450nm).

Allow Caustics - If enabled, the photon tracing kernel will create caustics for light reflecting or transmitting through objects with this material applied.

Film Width - Sets the film coating's thickness.

Film IOR - Sets the film coating's Index Of Refraction.

Bump - Simulates a relief using a **Greyscale** texture interpreted as a **Height** map for the Layer.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Distorts the Layer normals using an RGB image.

Layer Opacity - Controls the Layer's opacity with a Greyscale texture.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Metallic Material

The **Metallic** material has similar attributes and surface characteristics as the **Glossy¹** material. However, its default settings produce a more accurate metallic surface without any adjustments (figure 1).

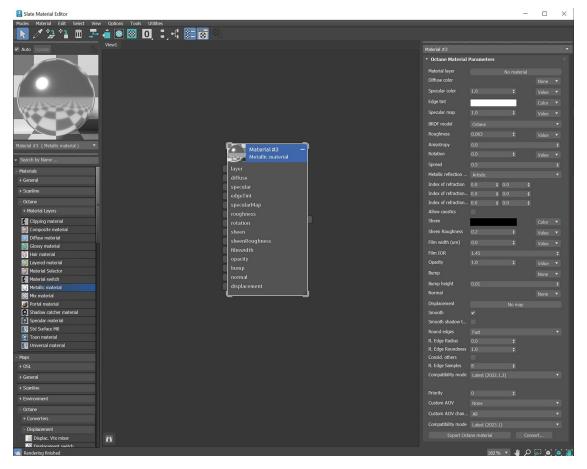


Figure 1: The Metallic material and its associated parameters

¹The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

Metallic Material Parameters

Material¹ Layer - Adds a Material layer above the base material. See the Material Layers topic in this manual for more details.

Diffuse² Color - The diffuse texture for the **Reflection** channel.

Specular³ Color - The specular reflection channel, which determines the metallic color. If the **IOR** is set to a value less than **0**, OctaneRender[®] adjusts the color brightness to match the Fresnel equations.

Edge Tint - The color of the edges of the metal material, only used with Artistic and IOR+Color modes found under the Metallic Refl. Mode.

Specular Map - Controls the blend between the Diffuse and Specular channels.

BRDF Model - The BRDF (Bidirectional Reflectance Distribution Function) determines the amount of light that a material reflects when light falls on it. For glossy materials, you can choose from six BRDF models. Specific geometric properties (the micro-facet distribution) of the surface affects each BRDF, which describes the surface's microscopic shape (i.e. micro-facet normals) and scales the brightness of the BRDF's reflections (figure 2).

Figure 2: The various BRDF models available for specularity

Roughness - Determines how much the specular reflection spreads across the surface. In CG terminology, this is also known as reflection blur. A value of **0** simulates a perfect smooth reflective surface such as a mirror. Increasing the value simulates microfacets in the surface, which causes the reflective highlights to spread. For example, to create the look of worn plastic, increase the Roughness value. This parameter accepts a value or **Texture** map (**Procedural** or **Image**).

Anisotropy- Adjusts the amount of change that a surface's reflectance has, depending on viewing direction.

Rotation - Controls the Anisotropy effect's orientation.

Spread - Determines the tail spread of the specular BSDF.

¹The representation of the surface or volume properties of an object.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

³Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

Metallic Refl. Mode - This attribute, along with the IOR attributes, provide options to control the IOR across a surface.

Artistic - Uses the albedo color.

IOR + Color - Uses the albedo color and further adjusts the surface brightness using the IOR.

RBG IOR - This is the most-used mode. It uses the three IOR values and ignores the albedo color.

Index Of Refraction - Complex-valued IOR (n-k*i) controlling the specular reflection's Fresnel effect, where n = the refractive index and k = the attenuation or extinction coefficient. For RGB mode, the IOR for red light (650nm).

Index Of Refraction (Green) - For RGB mode, the IOR for red light (550nm).

Index Of Refraction (Blue) - For RGB mode, the IOR for red light (450nm).

Allow Caustics - If enabled, the photon tracing kernel will create caustics for light reflecting or transmitting through objects with this material applied.

Sheen - The subtle lustre's color on the material's surface.

Sheen Roughness - The Roughness channel for the sheen that is present on Metallic and Glossy materials.

Film Width - Simulates the look of a thin film of material on the surface. This is useful when you want to create an effect such as the rainbow colors that appear on an oil slick surface. Larger values increase the effect's strength.

Film IOR - Controls the thin film's IOR by adjusting its visible colors.

Opacity - Controls the Toon material's transparency with a Grayscale texture.

Bump - Simulates a relief using a Grayscale texture interpreted as a Height map.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Distorts normals based on an RGB image.

Displacement1 - Creates very detailed geometry with a low memory footprint.

Smooth - Enables or disables normal interpolation. If normal interpolation is disabled, triangle meshes appear faceted.

Smooth Shadow Terminator - If enabled, self-intersecting shadows are smoothed according to the polygon's curvature.

Round Edges - Rounds off geometry edges by using a shading effect instead of creating additional geometry. It's best used for rounded edges that will appear small in the final render. The **Fast** mode uses the rounding

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

86 — Material Editor

method introduced in OctaneRender[®] v3. The **Accurate** mode produces better-looking results, but may be slower. Accurate mode can select the affected edges by using the **Concave Only** or **Convex Only** options.

Rounded Edges Radius - Define the size of the rounded edge by radius. Bevels the surface edges at render time without altering or subdividing the geometry. Using this option enhances object realism by eliminating sharp edges. The value refers to the rounded edge's radius. Higher values produce rounder edges.

Rounded Edges Roundness - Controls the rounded edge's shape. A value of 1 is completely round, while 0 is a chamfer.

Consider Other Objects - Controls how rounded edges are applied to different objects. When enabled, intersections between different objects are rounded. When disabled, only the current object is considered.

Rounded Edge Samples - Set samples for rendering edges.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1.2). The 2022.1.1 compatibility mode will always factor in the edge sharpness instead of just when the material smooth flag is enabled.

Priority - Used to resolve the ambiguity in overlapping surfaces, the surface priority control allows artists to control the order of preference for surfaces. A higher number suggests a higher priority for the surface material, which means it is preferred over a lower priority surface material if a ray enters a higher priority surface and then intersects a lower priority surface while inside the higher priority surface medium.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Mix Material

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

The **Mix** material mixes any two **Material¹** types (figure 1). It accepts any two material nodes, and you control the mix with a value, color, or texture.

Figure 1: The Checks texture controls mixing two Materials²

Mix Material Parameters

First Material and **Second Material** - These slots connect OctaneRender[®] Materials to the **Mix material**³. You can connect any OctaneRender Material to a slot, including other Mix materials. You can create a complex material by connecting multiple Mix materials together. Common uses for the Mix material include combining a **Diffuse material**⁴ with an **Emissive** output together with a **Glossy**⁵ material that has

¹The representation of the surface or volume properties of an object.

²A set of attributes or parameters that describe surface characteristics.

³Used to mix any two material types.

⁴Used for dull, non-reflecting materials or mesh emitters.

⁵The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

specular reflections, or combining a shiny **Glossy material**¹ with a **Specular material**² that uses a Medium to create subsurface scattering effects.

Amount - The slider goes from **0** - **1** and controls the amount of influence each Material has on the surface. A value of **1** means **First Material** has the highest amount of influence. A value of **0** means **Second Material** has the highest amount of influence. A value of **0** means **Second Material** has the highest amount of influence. Values in-between blend the materials together. Click on the checker swatch to the right of the slider to connect a Texture node to control the mix amount. You can use **Procedural** or **Image** textures to control the amount. Dark and light Texture values correspond to an amount setting of **0** and **1**.

Displacement³ - Connect a **Displacement** node to the Mix material's **Displacement** slot. This is preferable to mixing Materials that have their own Displacement nodes and settings.

Custom AOV - Writes a mask to the specified custom AOV.

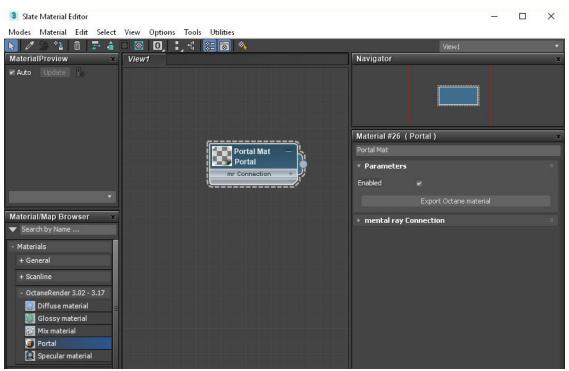
Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**⁴, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Portal Material

Portal⁵ materials optimize rendering light sources by helping the render kernel find important light sources in the scene (figure 1). For example, interior scenes illuminated by an outside light source that comes through windows can be difficult for the Path Tracer or Photon Tracing kernel to optimize the light as it enters the interior environment. To help the kernel find these light sources, you can put a polygon plane outside the window, and


¹Used for shiny materials such as plastics or metals.

²Used for transparent materials such as glass and water.

³The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

⁴The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

⁵A technique that assists the render kernel with exterior light sources that illuminate interiors. In interior renderings with windows, it is difficult for the path tracer to find light from the outside environment and optimally render the scene. Portals are planes that are added to the scene with the Portal material applied to them.

then apply a **Portal** material to the plane to create a portal plane. This setup improves the light quality and increases the render efficiency.

Figure 1: A Portal material in the Slate Material¹ Editor

To set up a scene using **Portal** materials, make sure that every window or opening in the environment is covered by a portal plane. It will not work if only one window has a portal over it when all other windows do not have a portal over them. And the normal direction of the portal plane should be facing inwards towards the interior, or the scene will not render properly. Don't block portal planes with other geometry like glass surfaces. Objects with the Portal material applied are invisible as geometry in the rendering.

We recommend using the least amount of geometry for portals. A few simple rectangular planes are best, as dense geometry used for portal planes can slow down rendering. It is possible to use a single piece of portal geometry to cover several openings such as multiple windows on a single wall. However, if the geometry is too large, that can reduce rendering efficiency. It's important to strike a balance between an opening's coverage and the size of the geometry that uses the Portal material.

Use Portal materials with the Pathtracing and PMC kernels, as it will not work when rendering with the Direct Light kernel.

¹The representation of the surface or volume properties of an object.

The two images in Figure 2 show the rendering results with and without a Portal material. The scene shows a glass sphere rendered in a room lit by light coming through a window. The scene is rendered using 500 samples. The first image does not have a portal plane placed over the opening, and it is noisier than the second image, which does have a portal plane.

Figure 2: The first image is rendered without a Portal material, the second is rendered with a Portal material

Portal Material Parameters

Enabled - Enabled or disable checkbox

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Shadow Catcher

The **Shadow Catcher²** option creates shadows cast by objects onto the surrounding geometry. The shadows cast are not limited to a ground plane, but can be cast onto other surfaces of varying shapes.

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

²The Shadow Catcher can be used to create shadows cast by objects onto the surrounding background imagery. The shadows cast are not limited to simply a ground plane but can be cast onto other surfaces of varying shapes.

You can enable Shadow Catcher by activating the **Shadow Catcher** option on the **Diffuse¹** material. The objects receiving the shadow should have the **Diffuse** material applied to it. There is a dedicated **Shadow** Catcher material available in the Slate Material² Editor as well.

In the **Render Settings** window, activate **Alpha Channel³** and disable **Keep Environment**. When the image is rendered, the shadows appear over the transparent parts of the surface. You can use this image in a compositing package to merge the object and the shadows into the composition.

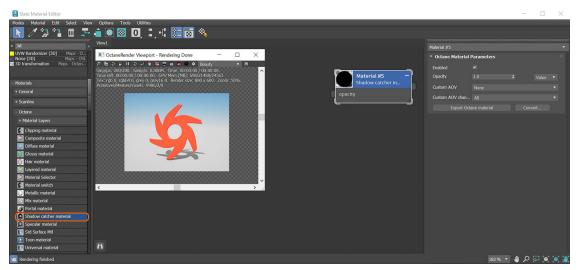


Figure 1 : The Shadow Catcher material applied to a ground plane

Shadow Catcher Parameters

Enabled - The material is transparent unless there is some direct shadow cast onto the material, which makes it less transparent depending on the shadow strength.

Opacity - Control visibility strength.

Custom AOV - Writes a mask to the specified custom AOV.

LASSEMT SOUTHING THE PERMIPSION OF THE SECTION OF T Based for dulle non-reflecting materials or mesh emitters. ²The representation of the surface or volume properties of an object.

³A greyscale image used to determine which areas of a texture map are opaque and which areas are transparent.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Sheen Layer

The layered material system lets you construct complex materials that consist of a base layer and up to eight **Material² Layers**. The layers are based on components used in previous Octane materials. Using this set of unique layers, OctaneRender[®] now lets you recreate complex materials in a physically-based manner, as opposed to manually **mixing materials**³ together.

The **Sheen** layer simulates the grazing coloration or rim lighting in fabrics like velvet. It can also simulate layers of dust.. Material Layers can connect to the **Layered Material**, **Layer Group**, **Material Layer Switch**, or a **Material Layer** pins on the standard Octane materials (Figure 1).

²The representation of the surface or volume properties of an object.

³Used to mix any two material types.

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Figure 1: Sheen layer connected to the Layer pin on a Diffuse material¹

Sheen Layer Parameters

Enabled - Enables or disables this node in a material layer network.

Sheen - The Sheen layer's color.

Roughness - The Sheen layer's roughness. Higher values spread the sheen color to larger parts of the surface.

Affect roughness - Override the roughness value of the base material with the Sheen roughness value.

Bump - Simulates a relief by using a **Greyscale** texture interpreted as a **Height** map for the layer.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Distorts Layer normals by using an RGB image.

Layer Opacity - Controls the Layer opacity with a Greyscale texture.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Specular Layer

The layered material system lets you construct complex materials that consist of a base layer and up to eight **Material² Layers**. The layers are based on components used in previous Octane materials. Using this set of unique layers, OctaneRender[®] now lets you recreate complex materials in a physically-based manner, as opposed to manually **mixing materials**³ together.

The **Specular**⁴ layer is used for shiny materials like plastics, or clear materials like glass. Material Layers can connect to the **Layered Material**, **Layer Group**, **Material Layer Switch**, or a **Material Layer** pins on the standard Octane materials (Figure 1).

¹Used for dull, non-reflecting materials or mesh emitters.

²The representation of the surface or volume properties of an object.

³Used to mix any two material types.

⁴Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

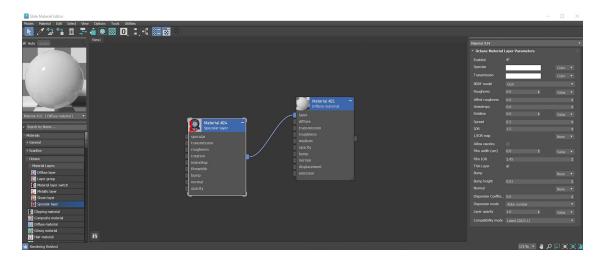
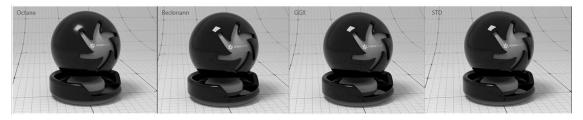


Figure 1: A Specular layer node connected to the Layer input pin on an Octane Diffuse material¹


Specular Layer Parameters

Enabled - Enables or disables this node in a material layer network.

Specular - The Layer's coating color.

Transmission² - The Layer's transmission color.

BRDF Model - The BRDF (Bidirectional Reflectance Distribution Function) determines the amount of light that a material reflects when light falls on it. For glossy materials, you can choose from six BRDF models. Specific geometric properties (the micro-facet distribution) of the surface affects each BRDF, which describes the surface's microscopic shape (i.e. micro-facet normals) and scales the brightness of the BRDF's reflections (figure 2).

Figure 2: The various BRDF models available for specularity

¹Used for dull, non-reflecting materials or mesh emitters.

²A surface characteristic that determines if light may pass through a surface volume.

Roughness - The layer's roughness.

Affect roughness - Override the roughness value of the base material with the Sheen roughness value.

Anisotropy - The layer's anisotropy. A value of **-1** is horizontal, while **1** is vertical. A value of **0** is isotropic.

Rotation - The specular anisotropic reflection's rotation.

Spread - Determines the tail spread of the specular BSDF.

IOR - The specular Reflection's or Transmission's Index Of Refraction.

1/IOR Map - The Index of Refraction map. Each texel represents 1/IOR. When this is empty, OctaneRender[®] uses the IOR value. If this is not empty, then this parameter overrides the Index Of Refraction set by the IOR value.

Allow Caustics - If enabled, the photon tracing kernel will create caustics for light reflecting or transmitting through objects with this material applied.

Film Width - Sets the film coating's thickness.

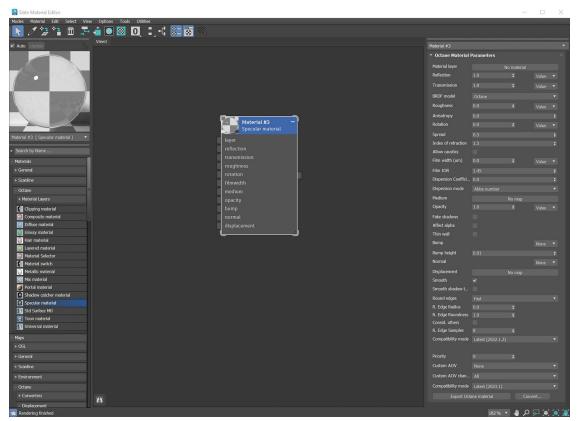
Film IOR - Sets the film coating's Index Of Refraction.

Thin Layer - Makes the layer very thin so light reflects or goes straight though the layer.

Bump - Simulates a relief by using a Greyscale texture interpreted as a Height map for the Layer.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Distorts Layer normals using an RGB image.


Dispersion Coefficient - The B parameter of the Cauchy dispersion model. Increasing this value increases the coloration amount and dispersion in the Layer's transmission and caustics.

Dispersion Mode - Determines how the IOR and dispersion inputs are interpreted.

Layer Opacity - Controls the Layer's opacity with a Greyscale texture.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Specular Material

The **Specular¹** material creates transparent materials like glass and water (figure 1).

Figure 1: Specular material² parameters

Specular Material Parameters

Material³ Layer - Adds a Material Layer above the base material. See the Material Layers topic in this manual for more details.

Reflection - Determines the strength of reflections visible on the surface. Lower values increase its ability to transmit light through the **Object** volume. Reflection is closely tied with the **Index of Refraction** (IOR), and the two parameters work together to tune the Specular material's reflectivity.

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

²Used for transparent materials such as glass and water.

³The representation of the surface or volume properties of an object.

Transmission¹ - Controls how light passes through a transparent surface. It works with the Index of Refraction to control the surface's transparency, and it accepts color or **Texture** inputs. A value of **1** means light passes through the surface. To create a mirror surface, set Transmission to **0** and Index of Refraction to **0**. To create colored glass, change the color input to something other than white. Transmission is not the same as **Opacity**. Opacity controls the surface's visibility, while Transmission controls the transparency. Use Transmission to create a reflective glass surface, and use Opacity to create a hole in the surface.

BRDF Model - The BRDF (Bidirectional Reflectance Distribution Function) determines the amount of light that a material reflects when light falls on it. For glossy materials, you can choose from six BRDF models. Specific geometric properties (the micro-facet distribution) of the surface affects each BRDF, which describes the surface's microscopic shape (i.e. micro-facet normals) and scales the brightness of the BRDF's reflections (figure 2).

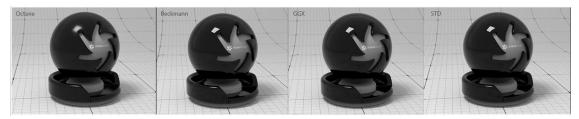


Figure 2: The various BRDF models available for specularity

Roughness - Creates microfacets in the surface, which blurs both the surface's reflections and the transparency. One way to create translucent plastic is to make a surface that has a high Transmission value and a Roughness value above **0**. Roughness accepts a color value, or a **Procedural** or **Image** texture (we recommend using a **Grayscale** image). Hue information doesn't affect the roughness.

Anisotropy - Adjusts the amount of change in a surface's reflection, depending on viewing direction.

Rotation - Controls the Anisotropy effect's orientation.

Spread - Determines the tail spread of the specular BSDF.

Index Of Refraction - As light photons move through surfaces like water, they slow down and change direction. This shift is visible as object distortion on the other side of the water's surface. The vacuum's index of refraction (IOR) is **1**, and the water's IOR is **1.33**, meaning that light travels 1.33 times faster through a vacuum than it does through water. You can find the IOR of most transparent surfaces by searching the internet. Knowing the correct IOR of a surface is key to replicating the look of the surface when rendering with OctaneRender[®].

Allow Caustics - If enabled, the photon tracing kernel will create caustics for light reflecting or transmitting through objects with this material applied.

¹A surface characteristic that determines if light may pass through a surface volume.

Film Width - Film Width simulates the look of a thin film of material on the surface. This is useful when you want to create an effect like the rainbow colors that appear on an oil slick's surface. Larger values increase the effect's strength.

Film IOR - Controls the thin film's Index of Refraction. Use this option to adjust the film's visible colors.

Dispersion Coefficient - Increasing the Dispersion value increases the amount of coloration and dispersion in the Object's transmission and caustics.

Dispersion Mode - Determines how the IOR and dispersion inputs are interpreted.

Medium - OctaneRender for 3DS Max has various types of **Mediums**¹:

- **Absorption² Medium** Produces the appearance of a material that absorbs light while passing through a surface. The resulting color depends on the distance that light travels through the material. For more information, see the **Mediums** topic in this manual.
- **Scattering³ Medium** Similar to the Absorption medium, but with an additional option for simulating subsurface scattering. Subsurface scattering is the phenomena that gives human skin and similar organic surfaces their characteristic glow under certain lighting conditions. It's a major component for creating the look of realistic skin. For more information, see the **Mediums** topic in this manual.
- Volume Medium⁴ Adds color and other qualities to a VDB⁵ file. VDBs are a generic volume format for creating effects such as smoke, fog, vapor, and similar gaseous objects. VDBs can consist of a single frame, or an animated sequence.
- **Random Walk** A newer variant of subsurface scattering that utilizes a stochastic or random process for the scattering of light through an object. This provides the most realistic result when rendering scatter volumes.
- **Std Volume Medium** This provides volume medium options with comprehensive controls for adjusting volume, scatter, transparency, emission, and temperature parameters based on imported VBD grid data.

Opacity - Determines what parts of the surface are visible in the render. Dark values indicate transparent areas, and light values indicate opaque areas. Values in-between light and dark indicate semi-transparent

¹The behavior of light inside a surface volume described by scatter, absorption, and transmission characteristics.

²Defines how fast light is absorbed while passing through a medium.

³Defines how fast light gets scattered when traveling through the medium.

⁴A shading system designed to render volumes such as smoke and fog.

⁵Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

areas. You can lower the Opacity value to fade the object's overall visibility, or you can use a Texture map to vary the opacity across the surface. For example, if you want to make a simple polygon plane look like a leaf, you would connect a black-and-white image of the leaf's silhouette to the **Diffuse¹** shader's **Opacity** channel.

Fake Shadows - Activates the **Architectural** glass option for all meshes sharing that material. When enabled, Specular materials exhibit Architectural glass characteristics with its transparent feature, allowing light to illuminate enclosed spaces or frame an exterior view.

Affect Alpha - This option lets refractions affect the **Alpha Channel**², as long as you enable the **Alpha Channel** in the **Kernel** settings.

Thin wall - When enabled, the geometry becomes very thin, so the ray bounce exits the material immediately, rather than entering the medium.

Bump - Creates fine details on the Material's surface using a Procedural or Image texture. When you connect a Grayscale texture to this parameter, the Texture's light areas look like protruding bumps, and the dark areas look like indentations. You can adjust the Bump map's strength by adjusting the Image texture's **Power** or **Gamma³** values. These attributes are covered in more detail in the **Textures⁴** topic in this manual.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Creates fine details on the surface. A Normal map is a special type of Image texture that uses red, green, and blue color values to perturb the surface's normals at render time, thus giving the appearance of added detail. They can be more accurate than Bump maps, but require specific software such as ZBrush[®], Mudbox[®], Substance Designer, XnormalTM, or others to generate.

Displacement⁵ - Adjusts the surface vertices' height at render time using an Image texture map. Displacement maps differs from Bump or Normal maps in that the geometry is altered by the Texture, as opposed to creating details. Displacement mapping is more complex than using a Bump or Normal map, but the results are more realistic, in particular along the surface's silhouette. Displacement mapping is covered in more detail under the Texture Overview topic in this manual.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²A greyscale image used to determine which areas of a texture map are opaque and which areas are transparent.

³The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

⁴Textures are used to add details to a surface. Textures can be procedural or imported raster files.

⁵The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

Smooth - Smooths the transition between surface normals. If this option is disabled, the edges between the polygons of the surface are sharp, giving the surface a faceted look.

Smooth Shadow Terminator - If enabled, self-intersecting shadows are smoothed according to the polygon's curvature.

Round Edges - Rounds off geometry edges by using a shading effect instead of creating additional geometry. It's best used for rounded edges that will appear small in the final render. The **Fast** mode uses the rounding method introduced in OctaneRender[®] v3. The **Accurate** mode produces better-looking results, but may be slower. Accurate mode can select the affected edges by using the **Concave Only** or **Convex Only** options.

Rounded Edges Radius - Define the size of the rounded edge by radius. Bevels the surface edges at render time without altering or subdividing the geometry. Using this option enhances object realism by eliminating sharp edges. The value refers to the rounded edge's radius. Higher values produce rounder edges.

Rounded Edges Roundness - Controls the rounded edge's shape. A value of 1 is completely round, while 0 is a chamfer.

Consider Other Objects - Controls how rounded edges are applied to different objects. When enabled, intersections between different objects are rounded. When disabled, only the current object is considered.

Rounded Edge Samples - Set samples for rendering edges.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1.2). The 2022.1.1 compatibility mode will always factor in the edge sharpness instead of just when the material smooth flag is enabled.

Priority - Used to resolve the ambiguity in overlapping surfaces, the surface priority control allows artists to control the order of preference for surfaces. A higher number suggests a higher priority for the surface material, which means it is preferred over a lower priority surface material if a ray enters a higher priority surface and then intersects a lower priority surface while inside the higher priority surface medium.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Convert - Provides options for converting this material to other Octane-specific material types.

Toon Material

The **Toon** material can design non-photorealistic renderings that have hand-drawn characteristics. You can use it in conjunction with the **Toon Ramp** texture connected to any of the ramp attributes to design more detailed, toon-like **Material¹** effects.

Slate Material Editor			- 0	×
Modes Material Edit Select View Options Tools Utilities		-		
Auto Update		Material #4		-
\frown		* Octane Material Parameters		
		Diffuse	Color	-
		Specular 1.0	\$ Value	
		Roughness 0.063	¢ Value	
		Toon lighting mode Toon lights		*
		Toon Diffuse Ramp		
Material #4(Toon material)				
	Material #4 — Toon material	Bump		-
- Materials		Bump height 0.01		\$
+ General	diffuse			T
+ Scanline	specular	Displacement		
- Octane	roughness	Outline color	Color	V
+ Material Layers	toonDiffuseRamp toonSpecularRamp	Outline thickness 0.3		¢
Clipping material	bump	Opacity 1.0		-
Composite material	normal	Smooth 🗸		
Diffuse material	displacement	Smooth shadow t		
💓 Glossy material	outlineColor	Round edges Fast		•
W Hair material	opacity	R. Edge Radius 0.0		
😥 Layered material		R. Edge Roundness 1.0		
Material Selector				
Metallic material		R. Edge Samples 8		
Mix material		Compatibility mode Latest (2022.1.2)		*
Portal material				
Shadow catcher material		Custom AOV None		•
Specular material		Custom AOV chan All		
[3] Std Surface Mtl		Compatibility mode Latest (2023.1)		*
Universal material				
- Maps				
- Maps		1020/ -	🗑 🔍 م 🌒	2 500 500
Contracting minimed		182 % *		5 . 9 5 . 80

Figure 2: Toon Material parameters

Toon Material Parameters

Diffuse² - The Diffuse reflection channel, or the albedo value of the Toon shader.

¹The representation of the surface or volume properties of an object.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Specular¹ - The Specular reflection channel, which behaves like a coating on top of the Diffuse layer and creates a highlight on the surface depending on the incident light angle and the camera's viewpoint. A value of **0** means there is no highlight at all.

Roughness - The Specular reflection channel's roughness. The appearance of the Toon shading's Specular reflection becomes more prevalent as the roughness of the Specular reflection channels decreases.

Toon Lighting Mode - Since Toon Lighting is required for Toon materials to work, this attribute defines where the Toon lighting is drawn from. This can be from the camera direction, or from OctaneRender[®]**Toon Lights**. If Toon Lights is the selected mode, Toon materials will need either a **Toon** point light or a **Toon** directional light included in the scene in order to work.

Toon Diffuse Ramp - The color/float range that defines how the Toon shading's albedo value (or diffuse color) varies over a surface.

Toon Specular Ramp - The color/float range that defines how the Toon shading's Specular value varies over a surface.

Bump - Simulates a relief using a Grayscale texture interpreted as a height map.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Distorts normals based on an RGB image.

Displacement² - Creates very detailed geometry with a low memory footprint.

Outline Color - The color used for the surface's outline and contour edges.

Outline Thickness - Defines and propagates the outline and contour edges used in the Toon shading. A thickness of **0.0** means there is no outline for that surface.

Opacity - Controls the Toon material transparency with a Grayscale texture.

Smooth - Enables normal interpolation. If disabled, triangle meshes will appear faceted.

Smooth Shadow Terminator - If enabled, self-intersecting shadows are smoothed according to the polygon's curvature.

Round Edges - Rounds off geometry edges by using a shading effect instead of creating additional geometry. It's best used for rounded edges that will appear small in the final render. The **Fast** mode uses the rounding method introduced in OctaneRender[®] v3. The **Accurate** mode produces better-looking results, but may be slower. Accurate mode can select the affected edges by using the **Concave Only** or **Convex Only** options.

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

²The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

Rounded Edges Radius - Define the size of the rounded edge by radius. Bevels the surface edges at render time without altering or subdividing the geometry. Using this option enhances object realism by eliminating sharp edges. The value refers to the rounded edge's radius. Higher values produce rounder edges.

Rounded Edges Roundness - Controls the rounded edge's shape. A value of 1 is completely round, while 0 is a chamfer.

Consider Other Objects - Controls how rounded edges are applied to different objects. When enabled, intersections between different objects are rounded. When disabled, only the current object is considered.

Rounded Edge Samples - Set samples for rendering edges.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1.2). The 2022.1.1 compatibility mode will always factor in the edge sharpness instead of just when the material smooth flag is enabled.

Priority - Used to resolve the ambiguity in overlapping surfaces, the surface priority control allows artists to control the order of preference for surfaces. A higher number suggests a higher priority for the surface material, which means it is preferred over a lower priority surface material if a ray enters a higher priority surface and then intersects a lower priority surface while inside the higher priority surface medium.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023.1). The 2022.1 compatibility mode is the legacy behavior where **Bump** map strength is active but **Bump Map Height** is ignored.

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Universal Material

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

The **Universal** material puts **Substance** maps and **PBR¹** outputs into OctaneRender[®]. Substance Painter and other engines map well to this material.

Universal materials blend between dielectric and metallic with a **Metallic** parameter value from **0** - **1**. Compared to other materials, the Universal material is equivalent to the **Metallic** material when its Metallic parameter is set to **1.0**, and it is similar to the **Glossy²** material when its Metallic parameter is set to **0.0**.

The Universal material is designed to follow after the workflow in the PBR model, since the Metallic material falls short of the metallic and roughness maps that are often derived from Substance Painter and other tools. The Universal material handles dielectric material (**Diffuse**³ and Glossy BRDF) and also Metallic material (Glossy BRDF) with assumed **IOR** or custom IOR for both dielectric and metallic surfaces.

Material⁴ IOR in the base layer of Universal materials is also not limited to scalar values, and this can be controlled procedurally with texture-type nodes and OSL shaders connected to a new **IOR** texture input pin.

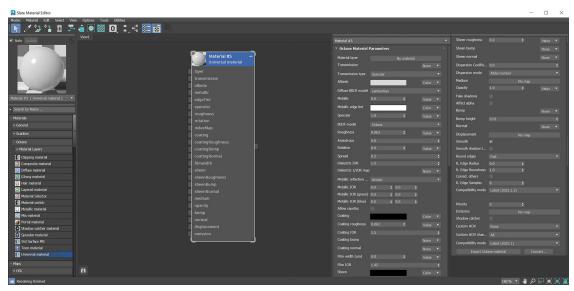


Figure 1: The Universal material parameters

⁴The representation of the surface or volume properties of an object.

¹A contemporary shading and rendering process that seeks to simplify shading characteristics while providing a more accurate representation of lighting in the real world.

²The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

³Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Figure 2: Creating basic and complex materials with Universal materials

You can also import the BaseColor maps, Height maps, Normal maps, Occlusion maps, and other texture maps for a scene derived from major 3D painting software into OctaneRender[®], and then re-link these texture maps to the corresponding Universal material node pins. The Universal material node blends the Glossy and Metallic materials, depending on the Metallic input settings. You can then adjust each texture's settings in greater detail. For example, you can place real-world IOR values of Metallic objects as part of the Universal material's Red, Green, and Blue IOR metallic input channels.

Universal Material Parameters

Material Layer - Adds a material layer above the base layer. See the Material Layers topic in this manual for more details.

Transmission

Transmission¹ - Controls how light passes through a transparent surface. It is tied with the **Dielectric IOR** parameter to control surface transparency. It accepts a **Color**, **Texture**, or value as an input, but Color input provides the most control. To create colored glass, change the Color input to something other than black and set the **Albedo** to black. Transmission is not the same as **Opacity**. Opacity controls the visibility of the sur-

¹A surface characteristic that determines if light may pass through a surface volume.

face, while Transmission controls the transparency. Use Transmission to create a reflective glass surface, and use Opacity to create a hole in the surface.

Transmission type - Determines how light refracts.

Base

Base Weight - Determines the contribution of the base layer to the shader results.

Base Color - Determines the base color.

Diffuse Roughness - Higher values result in a micro-level of roughness being applied to the base layer.

Diffuse BRDF Model - Provides three models for diffuse light reflectance. Lambertian reflects light equally in all directions and does not support roughness. The Octane option creates a sheen effect much like velvet. And, the Oren-Nayar option behaves more like clay.

Metalness - The material's metallic appearance. Blends between dielectric and metallic material.

Specular Layer

Specular¹ - Determines the color of glossy reflections for Dielectric materials (when the Metallic parameter is set to **0**). Set the **Dielectric IOR** parameter higher than **1.0** for the Specular parameter to contribute to the surface characteristics.

BSDF Model - The BSDF determines the amount of light that a material scatters when light falls on it. For glossy materials, you can choose from five BRDF models. Specific geometric properties (the micro-facet distribution) of the surface affects each BSDF, which describes the surface's microscopic shape (i.e. micro-facet normals) and scales the brightness of the BRDF's reflections (figure 3).

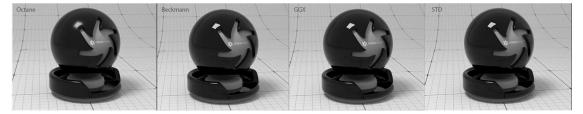


Figure 3: The various BRDF models available for specularity

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

Roughness

Roughness - Determines how much the Specular and Transmission characteristics spread across the surface.

Anisotropy - Determines the shape of the Specular and Transmission highlights. A value of **-1** creates a horizontal shape, and a value of **1** creates a vertical shape.

Rotation - Controls the Anisotropy shape's rotation.

Spread - Determines the tail spread of the specular BSDF.

IOR

Dielectric IOR - This is the IOR that controls the Fresnel effect of the specular reflection or transmission. By default, if the **Dielectric 1/IOR** parameter is empty, then the dielectric specular uses this IOR parameter instead.

Dielectric 1/IOR - Overrides the Dielectric IOR when a map or value is applied. This parameter is an index of refraction map, where each texel represents 1/IOR.

Metallic Refl. Mode - This attribute, along with the IOR attributes, provide options for controlling the Index of Refraction across a surface.

Artistic - Uses the Albedo color.

IOR + Color - Uses the Albedo color and further adjusts the surface brightness by using the IOR.

RBG IOR - This is the most used mode. It uses the just the three IOR values and ignores the Albedo color altogether.

Metallic IOR - Complex-valued IOR (n-k*i) that controls the Fresnel effect of the specular reflection for Metallic materials. For RGB IOR mode, this serves as the IOR for the red light (650nm).

Metallic IOR (Green) - For RGB IOR mode, this is the IOR for the green light (550nm).

Metallic IOR (Blue) - For RGB IOR mode, this is the IOR for the blue light (450nm).

Allow Caustics - If enabled, the photon tracing kernel will create caustics for light reflecting or transmitting through objects with this material applied.

Coating Layer

Coating - Adds a second layer of reflection to the surface.

Coating Roughness - Determines how much the Coating characteristic spreads across the surface.

Coating IOR - Controls the Fresnel effect for the Coating characteristics of the surface.

Coating Bump - Much like a regular **Bump** map, this creates fine details on the Material's Coating attribute using a **Procedural** or **Image** texture.

Coating Normal - Creates fine details on the surface's coating. However, a **Normal** map is a special type of **Image** texture that uses red, green, and blue color values to perturb the surface's normals at render time, thus giving added detail. They can be more accurate than **Bump** maps, but require specific 3D software to generate.

Thin Film Layer

Film Width - Simulates the look of a thin film of material on the surface. This is useful when you want to create an effect like the rainbow colors that appear on an oil slick's surface. Larger values increase the effect's strength.

Film IOR - Controls the thin film's IOR and its visible colors.

Sheen Layer

Sheen - Adds a second layer of glossiness to the surface.

Sheen Roughness - Determines how much the Sheen characteristic spreads across the surface.

Sheen Bump - Much like a regular Bump map, this creates fine details in the Material's Sheen attribute using a **Procedural** or **Image** texture.

Sheen Normal - This attribute also creates fine details in the surface's sheen. However, a Normal map is a special type of Image texture that uses red, green, and blue color values to perturb the surface normals at render time, thus giving the appearance of added detail. They can be more accurate than Bump maps, but require specific 3D software to generate.

Transmission Properties

Dispersion Coefficient - Increasing the **Dispersion** value increases the amount of coloration and dispersion in the Object's transmission and in caustics.

Dispersion Mode - Determines how the IOR and dispersion inputs are interpreted.

Medium - OctaneRender for 3DS Max has various types of **Mediums**¹:

- **Absorption² Medium** Produces the appearance of a material that absorbs light while passing through a surface. The resulting color depends on the distance that light travels through the material. For more information, see the **Mediums** topic in this manual.
- **Scattering³ Medium** Similar to the Absorption medium, but with an additional option for simulating subsurface scattering. Subsurface scattering is the phenomena that gives human skin and similar organic surfaces their characteristic glow under certain lighting conditions. It's a major component for creating the look of realistic skin. For more information, see the **Mediums** topic in this manual.
- Volume Medium⁴ Adds color and other qualities to a VDB⁵ file. VDBs are a generic volume format for creating effects such as smoke, fog, vapor, and similar gaseous objects. VDBs can consist of a single frame, or an animated sequence.
- **Random Walk** A newer variant of subsurface scattering that utilizes a stochastic or random process for the scattering of light through an object. This provides the most realistic result when rendering scatter volumes.
- **Std Volume Medium** This provides volume medium options with comprehensive controls for adjusting volume, scatter, transparency, emission, and temperature parameters based on imported VBD grid data.

Opacity - Determines what parts of the surface are visible in the render. Dark values indicate transparent areas, and light values determine opaque areas. Values in-between light and dark indicate semi-transparent areas. You can lower the Opacity value to fade the Object's overall visibility, or you can use a Texture map to vary the opacity across the surface. For example, to make a simple polygon plane look like a leaf, connect a black-and-white image of the leaf's silhouette to the **Diffuse** shader's **Opacity** channel.

Fake Shadows - If enabled, light traces through the Material during the shadow calculation, ignoring refraction.

¹The behavior of light inside a surface volume described by scatter, absorption, and transmission characteristics.

²Defines how fast light is absorbed while passing through a medium.

³Defines how fast light gets scattered when traveling through the medium.

⁴A shading system designed to render volumes such as smoke and fog.

⁵Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

Affect Alpha - Enabling this option causes refraction to affect the **Alpha Channel**¹. This parameter has an effect if the Alpha Channel is enabled in the Render settings' **Kernel** parameters.

Geometric Properties

Bump - Creates fine details on the Material's surface using a Procedural or Image texture. When you connect a Grayscale texture to this parameter, light areas of the texture indicate protruding bumps, and dark areas indicate indentation. You can adjust the Bump map's strength by setting the **Power** or **Gamma²** values on the **Image** texture node. These attributes are covered in more detail in the **Textures³** topic of this manual.

Bump Height - Determines the strength of the bump map. A value of 0 provides no bump height and negative values will invert the bump map.

Normal - Also creates fine detail on the surface. A Normal map is a special type of Image texture that uses red, green, and blue color values to perturb the surface normals at render time, giving the appearance of added detail. They can be more accurate than Bump maps, but require specific 3D software to generate.

Displacement⁴ - Adjusts the height of the vertices of a surface at render time using a Texture map. Displacement maps differs from Bump or Normal maps in that the geometry is altered by the Texture, as opposed to creating the appearance of detail. Displacement mapping is more complex than using a Bump or Normal map, but the results can be more realistic, in particular along the surface's silhouette. Displacement mapping is covered in more detail under the Texture Overview category.

Smooth - Smooths out the transition between surface normals. If this option is disabled, the edges between the polygons of the surface are sharp, giving the surface a faceted look.

Smooth Shadow Terminator - If enabled, self-intersecting shadows are smoothed according to the polygon's curvature.

Round Edges - Rounds off geometry edges by using a shading effect instead of creating additional geometry. It's best used for rounded edges that will appear small in the final render. The **Fast** mode uses the rounding method introduced in OctaneRender[®] v3. The **Accurate** mode produces better-looking results, but may be slower. Accurate mode can select the affected edges by using the **Concave Only** or **Convex Only** options.

⁴The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

¹A greyscale image used to determine which areas of a texture map are opaque and which areas are transparent.

²The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

³Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Rounded Edges Radius - Define the size of the rounded edge by radius. Bevels the surface edges at render time without altering or subdividing the geometry. Using this option enhances object realism by eliminating sharp edges. The value refers to the rounded edge's radius. Higher values produce rounder edges.

Rounded Edges Roundness - Controls the rounded edge's shape. A value of 1 is completely round, while 0 is a chamfer.

Consider Other Objects - Controls how rounded edges are applied to different objects. When enabled, intersections between different objects are rounded. When disabled, only the current object is considered.

Rounded Edge Samples - Set samples for rendering edges.

Miscellaneous Properties

Priority - Used to resolve the ambiguity in overlapping surfaces, the surface priority control allows artists to control the order of preference for surfaces. A higher number suggests a higher priority for the surface material, which means it is preferred over a lower priority surface material if a ray enters a higher priority surface and then intersects a lower priority surface while inside the higher priority surface medium.

Emission - Creates a surface that emits light (also known as a **Mesh** emitter). To use this option, connect the **Emission** input of the **Diffuse** material to either a **Blackbody** or **Texture** emission node. These nodes are covered in more detail in the Texture Overview topic, and in **Mesh Emitters**¹ under the Lighting Overview category in this manual.

Shadow Catcher² - This converts the material into a shadow catcher. When it is active, the surface is visible in the areas that are in shadow, and all other areas are transparent in the render.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1.2). The 2022.1.1 compatibility mode will always factor in the edge sharpness instead of just when the material smooth flag is enabled.

Custom AOV - Writes a mask to the specified custom AOV.

Custom AOV Channel - Determines whether the custom AOV is written to a specific color channel (R, G, or B) or to all the color channels.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2023 a) in The 2022 a compatibility mode is the legacy behavior by here **Buggy** map strength is active by the **B**

Export Octane Material - Opens a dialog window that provides options for exporting the Material to **ORBX**¹, the Local DB, or the Live DB.

Convert - Provides options for converting this material to other Octane-specific material types.

Textures

Textures² assist with the creation of flexible **Materials**³. This section details all the Texture-specific nodes available in the **Maps** rollout in the **Slate Material**⁴ **Editor** (figure 1).

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

²Textures are used to add details to a surface. Textures can be procedural or imported raster files.

³A set of attributes or parameters that describe surface characteristics.

⁴The representation of the surface or volume properties of an object.

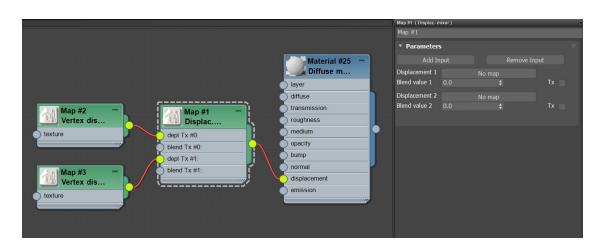

Slate Material Editor		-	□ ×
Modes Material Edit Select View Options Tools Utilities			
N 🖊 🥲 💱 🛍 🎩 着 🖲 🕺 🔘, 🐛 👯 🐼 🐁			
V Auto Under 1	Material #21		.
	* Octane Material P	arameters	
	Diffuse		Texture 🔻
			None 🔻
Hap #39 (Cheds toture)			Ŧ
Search by Name			Value 🔻
+ Somine	Medium	No map	
+ Environment			Value 🔻
- Odane	Bump		None 🔻
+ Converters	Bump height Normal		•
+ Displacment + Enciden Material #21	Displacement		None 🔻
la contrata de		No map	
+ Environments Layer			
+ Environments Heids Map #39 Checks texture Liver diffuse			•
+ Geometric transmission transmission			
+ Image 20 transformation projection roughness medium	R. Edge Roundness Consid. others		
+ Mapping opacity	R. Edge Samples		
+ Materials bump	Compatibility mode		•
+ Medun normat			
+ Operators displacement emission			
+ Output AOVs			
+ Procedural	Shadow catcher Custom AOV		
+ Projetion	Custom AOV chan		
+ Render settings	Compatibility mode		· · ·
+ Toxhare Dayors			
+ Transforms			nvert
+ UNRY			
+ Wrappers			
🕅 Float Texture 🕅 Gaussian spectrum			
N Ganada gectrum			
📓 RGBSpectrum Texture			
+ Controllers			
+ Some Materials A			
Rendering finished		171 % 🔻 🍓 🔎	💬 💽 💓 🌉

Figure 1: Accessing Octane textures in the Slate Material Editor window

Displacement Vertex Mixer

The Vertex Displacement¹ Mixer mixes multiple Vertex Displacement nodes.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

Figure 1: Two Vertex Displacement nodes blended together using the Displacement Vertex Mixer node

Vertex Displacement Mixer Parameters

Add Input - Add a new Displacement input to the end of the Node.

Remove Input - Removes the last Displacement input.

Displacement 1 - Connects a Vertex Displacement node.

Blend Weight 1 - Controls the mix amount for the connected Vertex Displacement node.

Vertex Displacement

Vertex Displacement¹ is a more robust displacement system that does not suffer from the same limitations as **Texture Displacement**. It works with all **Textures**² and **Projections**³, including **Procedurals**, **OSL** textures, and **Images**. **Height** maps and **Vector Displacement** maps are also supported, and you can mix them by using the Vertex Displacement mixer node.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

²Textures are used to add details to a surface. Textures can be procedural or imported raster files.
³Methods for orienting 2D texture maps onto 3D surfaces.

		Map #2 (Vertex displac	ement)			x
		Map #2				
	Material #25 -	• Parameters				
	Diffuse m	Texture				
) layer	Height 1.0	1.0			
	diffuse	Mid level				
Map #2 Vertex dis texture	transmission	Map type				
	roughness	Vector space	Object			
	medium	Auto bump map				
	opacity	Subdivision level				
	bump					
	normal					
	o displacement					
	emission					

Figure 1: A Vertex Displacement node connected to the Displacement input on a Diffuse material¹

Vertex Displacement Parameters

Texture - All Texture types are supported, including Images, Procedurals, and OSL textures.

Height - The displacement height in meters.

Mid Level - The image value that corresponds to no displacement. The range is always normalized to [0,1]. Set this value to **0.5** for Image textures that use 50% to represent no displacement.

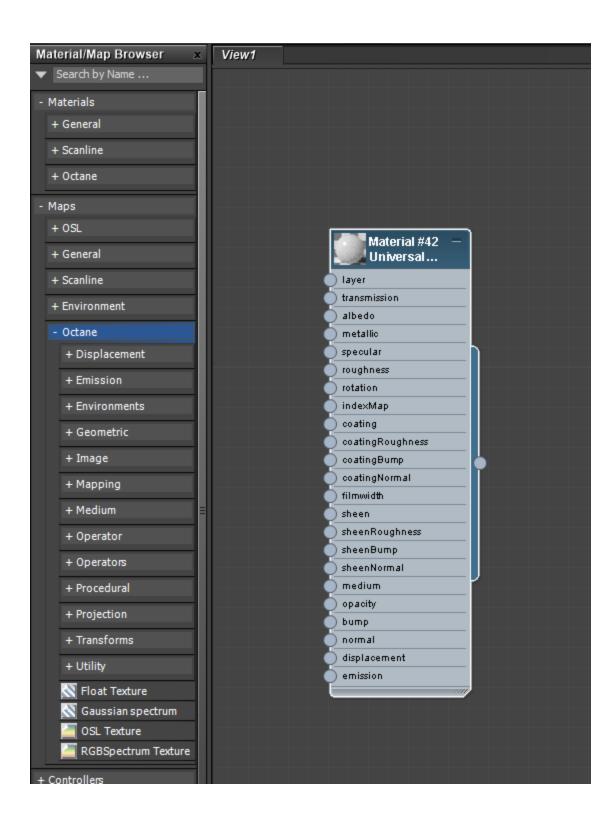
Map Type - Choose between Height maps and Vector Displacement maps.

Vector Space - Valid when Map Type is set to Vector Displacement.

Auto Bump Map - Generates an **Automatic** bump map to achieve fine details without requiring high subdivision levels. Only supports Height displacement maps.

Subdivision Level - This refers to the subdivision level applied to **Polygons** using this **Material**². It overrides the subdivision level set in **Geometry** preferences. Higher values achieve greater displacement detail, but can also increase rendering and pre-processing times.

Compatibility Mode - The Octane version that the behavior of this node should match, the default is Latest (2023.1). The 2022.1 compatibility mode provides legacy behavior for world space projection affecting auto bump map textures.


¹Used for dull, non-reflecting materials or mesh emitters.

²The representation of the surface or volume properties of an object.

Texture Generators

Texture Generators provide a set of **Nodes** in the **Slate Material¹ Editor** that create solid colors, gradients, **Procedural** textures, and import external **Texture** maps. You can access these Nodes from the **Maps** rollout in the Slate Material Editor.

¹The representation of the surface or volume properties of an object.

Figure 1: Accessing OctaneRender[®] Map nodes in the Slate Material Editor

Alpha Image

The **Alpha Image** utilizes an Image's native Alpha channel to provide transparency. This type accepts PNG, TIF, and **EXR**¹ image types.

¹Also known as OpenEXR. This image file format was developed by Industrial Light & Magic and provides a High Dynamic Range image capable of storing deep image data on a frame-by-frame basis.

Map #71					•
• Octane Texture P	arameters				
Filename		No	one		Reload
Standard texture			No map		
Sequence digits	0				
Last file num					
Current filename					
Start frame					
End condition					
Seq. playback rate					
channelFormat	Automatic				•
imageChosenLaye	Default				•
iesPhotometryMode	Normalize (peak to	o 1.0		-
legacyPngGamma					
Power	1.0			Val	ue 🔻
Color space			sRGB		
Legacy gamma	1.0				¢
Invert					
Linear sRGB invert	~				
UV transform			No map		
Projection			No map		
Border mode (U)	Wrap arour	nd			•
Border mode (V)	Wrap arour	nd			•
Camera mapped					
Bake input scale	5000.0				
Bake input resolution	512		512	¢	

Figure 1: Alpha Image parameters

Alpha Image Parameters

File Name - The file name of the imported texture map.

Num. Sequence Digits/Start Frame/End Frame/End Condition/Sequence Playback Rate -

These refer to the advanced file sequence settings for **Image** textures and **Volume** objects. The **Num**. **Sequence Digits** setting is applicable when a direct file sequence is used (not an IFL¹ file). The **End Condi**tion is applicable when an IFL file is used. The **Start Frame** and **Playback Rate** are used in both modes.

Channel Format - Indicates the channel format to be used after conversion and compression.

Image Chosen Layer - Indicates the chosen layer nam, if the current image has multiple layers.

IES² Photometry Mode - Determines how to normalize data from an IES file.

Legacy PNG Gamma³ - If true, PNG files with a gamma chunk will be converted to display gamma 2.2 while loading.

Power - Controls image brightness. Lowering the value makes the image look darker.

Color Space - Determines the color space of the imported image.

Legacy Gamma - Controls input image luminance, and tunes or color-corrects images if needed.

Invert - Inverts the texture values.

Linear sRGB Invert - Inverts the image after conversion to linear sRGB color space.

UV Transform - Positions, rotates, and scales the surface texture.

Projection - Accepts OctaneRender® **Projection** nodes. If nothing is connected to this input, the Image texture uses the surface's **UV** texture coordinates by default. This also changes the UV set if the original surface contains more than one UV set. For more details, see the Octane **Projections**⁴ topic in this manual.

Border Mode - Sets the behavior of the space around the image if it doesn't cover the entire geometry. **Wrap Around** is the default behavior, which repeats the image in the areas outside the image's coverage. If you set this parameter to **White Color** or **Black Color**, the area outside the image turns to white or black, respectively.

Camera Mapped - Sets the projection of the image to a perspective projection matching the current camera.

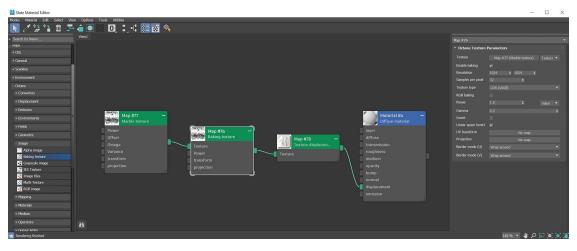
⁴Methods for orienting 2D texture maps onto 3D surfaces.

¹(Image File List) file is an ASCII file that constructs an animation by listing single-frame bitmap files to be used for each rendered frame. When you assign an IFL file as a bitmap, rendering steps through each specified frame, resulting in an animated map. (reference: https://knowledge.autodesk.com/support/3DS-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-CA63616D-9E87-42FC-8E84-D67E1990EE71-htm.html)

²An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

³The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

Bake input scale -Affects only 3D texmaps. For example, 'Marble' is a 3D texmap, but 'Checker' is not. 5000 is fine with a default scene. With other scene units, objects size, etc, it might be necessary to adjust this scale.


Bake Input Resolution - These parameters provide an on-the-fly texture baking approach. OctaneRender® will render by using standard 3DS Max® CPU-calculated nodes and bake all **Textures**¹ every time it requests a scene translation. If there are many Textures with high-baking resolutions, this increases the scene translation time by a lot.

Baking Texture

The **Baking Texture** node converts any procedural texture to image texture (Figure 1). For example, if you want to use **Displacement**² in Octane, this can only be done with an image texture. With this node, however, it is possible to convert the procedural texture to the image texture and use it in the displacement channel.

The baking process uses the texture preview system, which looks like an **Image** texture to the rest of the system. The baking is done whenever you change an input, and it is calculated on-the-fly. The internal image is not stored in the project, so it needs recalculating whenever you load the project.

The Baking texture takes an input from any Procedural texture map and then connects it to a Displacement node, which connects to the **Displacement** pin on an OctaneRender[®] Material³.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

²The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

³The representation of the surface or volume properties of an object.

Figure 1: The typical Slate material network for using the Baking texture node with Procedural texture maps

Baking Texture Parameters

Texture - Accepts any procedural texture.

Enable Baking - Enables the baking process.

Rsolution - Determines the resolution of the texture to be converted. Higher resolutions require more RAM and GPU^1 power.

Samples per Pixel - Determines how many samples will be used per pixel.

Texture Type - Determines the bit-depth of the bake texture. The options include LDR² or low dynamic range and HDR Linear Space.

RGB Baking - Converts RGB values according to the type of procedural texture. If the procedural texture has RGB values, enable this option. If the procedural texture uses greyscale values, leave this option off.

Power - Adjusts the intensity value of the baked texture.

Gamma³ - Adjusts the gamma value of the baked texture.

Invert - Inverts the baked texture.

Linear Space Invert - Inverts the image in linear color space.

UV Transform - Positions, rotates, and scales the surface texture.

Projection - Accepts OctaneRender®Projection nodes. If nothing is connected to this input, the Image texture uses the surface's UV texture coordinates by default. This also changes the UV set if the original surface contains more than one UV set. For more details, see the Octane **Projections**⁴ topic in this manual.

Border Mode U/V - Sets the behavior of the space around the image if it doesn't cover the entire geometry. Wrap Around is the default behavior, which repeats the image in the areas outside the image's coverage. If

⁴Methods for orienting 2D texture maps onto 3D surfaces.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

²Image formats that have 8 bits per color channel such as the common image formats JPEG, PNG, GIF among others.

³The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

you set this parameter to White Color or Black Color, the area outside the image turns to white or black, respectively.

Figure 2: The rendered results from Figure 1

Checks Texture

The **Checks** procedural texture is useful for making stripes, checkerboard, and grid patterns. It requires a **3D Transform** map or **UV** coordinates for a correct projection across a surface (figure 1).

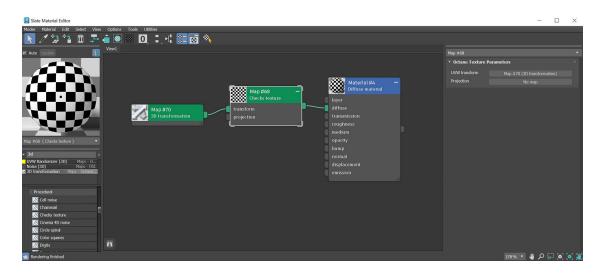


Figure 1: Connecting a 3D Transform map to a Checks texture

Float Texture

The **Float** texture provides a map where the **Texture** data is a floating point value from **0.00** - **1.00**. This signifies a greyscale value, where **0.00** is darkest and **1.00** is lightest.

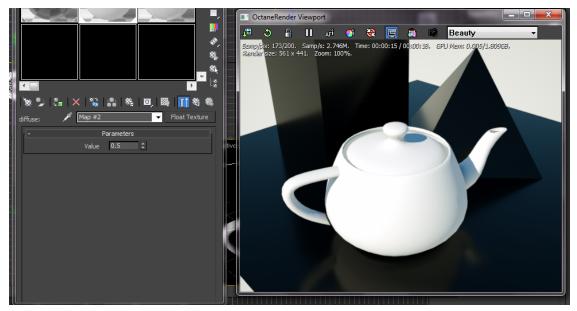


Figure 1: Float texture

Gaussian Spectrum

The **Gaussian Spectrum** texture is based on a Gaussian distribution spectrum. **Wavelength** sets the spectrum's center, and **Width** sets the curve's width. Narrower widths create purer and more saturated colors.

Map #14 (Gauss	sian spectrum)	x	Samp/dxx 200/200, Samp/st 0.000M, Timex 00x00x10 / 00x00x10, GPU Memx 0.004/1.307GB, Render size: 513 x 379, Zoomx 100%,
Map #14			
-	Parameters	i	
wavelength	1.0 ‡	Value 🔻	
width	0.141 🛟	Value 🔻	
power	1.0 ‡	Value 🔻	
	73% 🔫 👑 🔩	3 (I) (I) 💥 L	

Figure 1: Gaussian Spectrum texture

Gaussian Spectrum Parameters

Wavelength - This represents the mean wavelength approximation between **380nm** - **720nm**. Lower wavelength values appear bluish, while higher wavelengths (around **700nm**) appear reddish.

Width - Almost no color is visible when using a width of **0.000**. On the other hand, a width of **1.000** means the color is spread thin over a large space, and the Texture appears faint.

Power - The Texture's brightness.

Gradient Texture

The **Gradient** texture affects graded linear changes to represent slopes, depth, distance, or color progressions of **Procedural** texture maps. Colors can be specified through a series of control points on the curve in the same way that 3DS Max[®] creates gradients. The Gradient texture can also be used to control the color distribution for procedural textures (figure 1).

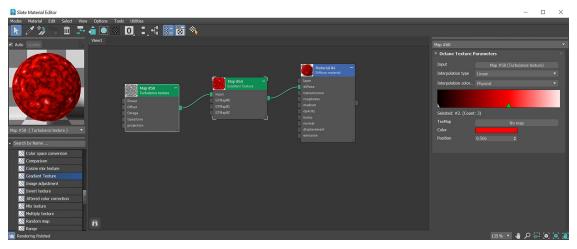


Figure 1: The Gradient texture parameters

Gradient Texture Parameters

Input - Determines how the color maps to the surface.

Interpolation Type - Select **Constant**, **Linear**, **Smooth Step**, or **Hermite** to determine the color-blending rate from one marker to the next.

Interpolation Color Space - Selects between Physical or Perceptual as the color space type.

Gradient - Determines the gradient's colors. Click in the gradient to add marker and drag to either ends to remove marker. Each new marker creates an arrow and a new color input option. You can place the color on different parts of the gradient by dragging the marker around.

Gradient Start Value - Use the color swatches or RGB values to set the gradient's starting color.

Gradient End Value - Use the color swatches or RGB values to set the gradient's ending color.

TexMap - **Textures**¹ used to tile after a marker position.

Color - Define a RGB value for the gradient at the marker position.

Position - Define the marker placement on the gradient.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Grayscale Image

The **Grayscale** image map interprets any **Texture** map as grayscale, even if it is a full-color image, and saves VRAM. You can use the **Invert** checkbox to invert the image, which is useful for **Bump** and **Opacity** maps.

Map #4 (Greyso	ale image)		x		
Map #4					
• Parameters					
Filename		None	Reload		
Standard texture		No map			
Sequence digits	0				
Last file num					
Current filename					
Start frame					
End condition					
Seq. playback rate					
channelFormat	Automatic				
imageChosenLaye	Default				
Power	1.0		Value 🔻		
Gamma	2.2				
Invert					
Linear space invert	¥				
UV transform	Map #	≠5 (2D transfor	rmation)		
Projection	No map				
Border mode	Wrap around				
Camera mapped					
Bake input scale	5000.0				
Bake input resolution	512 \$	51	2 🗘		

Figure 1: The Grayscale image node parameters

Greyscale Image Parameters

Standard Texture - Connects non-OctaneRender[®] Texture nodes to an OctaneRender material network.

Num. Sequence Digits/Start Frame/End Frame/End Condition/Sequence Playback Rate -These refer to the advanced file sequence settings for **Image** textures and **Volume** objects. The **Num. Sequence Digits** setting is applicable when a direct file sequence is used (not an IFL¹ file). The **End Condition** is applicable when an IFL file is used. The **Start Frame** and **Playback Rate** are used in both modes.

Channel Format - Indicates the preferred channel format for loading the image. This is ignored for 8-bit images.

Image Chosen Layer - Indicates the chosen layer name, if the current image has multiple layers.

IES² Photometry Mode - Determines how to normalize data from an IES file.

Legacy PNG Gamma³ - If true, PNG files with a gamma chunk will be converted to display gamma 2.2 while loading.

Power- Controls image brightness. Lower values cause the image to appear darker. When used as a Bump map, this setting alters the bump height on the surface.

Color Space - Determines the color space of the imported image.

Legacy Gamma - Controls the input image luminance, and it also tunes or color-corrects the image.

Invert - Inverts the texture values.

Linear sRGB Invert - Inverts the image after conversion to linear sRGB color space.

UV Transform - Positions, rotates, and scales the surface texture.

Projection - Accepts OctaneRender[®] **Projection** nodes. If nothing is connected to this input, the Image texture uses the surface's **UV** texture coordinates by default. This also changes the UV set if the original surface contains more than one UV set.

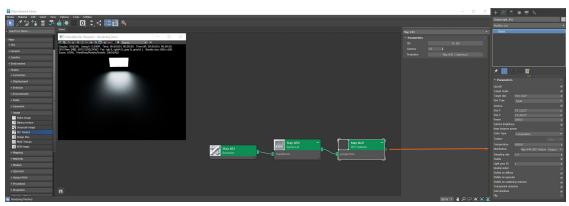
Border Mode - Sets the behavior of the space around the image if it doesn't cover the entire geometry. **Wrap Around** is the default behavior, which repeats the image in the areas outside the image's coverage. If you set

¹(Image File List) file is an ASCII file that constructs an animation by listing single-frame bitmap files to be used for each rendered frame. When you assign an IFL file as a bitmap, rendering steps through each specified frame, resulting in an animated map. (reference: https://knowledge.autodesk.com/support/3DS-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-CA63616D-9E87-42FC-8E84-D67E1990EE71-htm.html)

²An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

³The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

this parameter to **White Color** or **Black Color**, the area outside the image turns to white or black, respectively.


Camera Mapped - Sets the current rendering camera to project the image onto the surface.

Bake input scale -Affects only 3D texmaps. For example, 'Marble' is a 3D texmap, but 'Checker' is not. 5000 is fine with a default scene. With other scene units, objects size, etc, it might be necessary to adjust this scale.

Bake Input Resolution - These parameters provide an on-the-fly texture baking approach. OctaneRender® will render by using standard 3DS Max® CPU-calculated nodes and bake all **Textures**¹ every time it requests a scene translation. If there are many Textures with high-baking resolutions, this increases the scene translation time by a lot.

IES Texture

The **IES²** texture uses an IES profile as an illumination source. IES profiles can be added to light emitting geometry using the **Black Body³** and **Texture** emission nodes or to an Octane light using the **Distribution** input. There is also an Octane-specific **IES Light** available in the Octane light category of the Command panel.

An IES profile can be added to an Octane Light using the **Distribution** input (figure 1).

Figure 1: Adding an IES light profile to an Octane light

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

²An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

³An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

The **IES Texture** can be added to a geometry object as well. Create a plane object and connect an Octane **Diffuse**¹ material to the plane. The **IES Texture** node can be added to the **Distribution** input on both a **Black Body** & **Texture** emission node (figure 2).

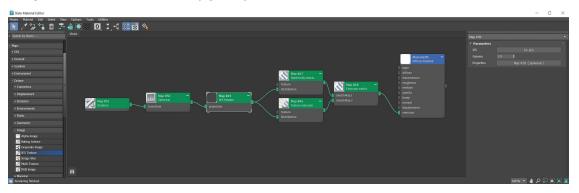


Figure 2: The Emission Switch node is used to connect both a Black Body & a Texture emission node to the Emission input on a Diffuse material²

The IES-specific Octane light has an input for an IES light profile to be added (figure 2). This input does not require the use of the **IES Texture** node.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Used for dull, non-reflecting materials or mesh emitters.

+ 🖾 🖪		<u>ب</u> ع			
OctaneIESLight_(01				
Modifier List					•
Object					
? ا🌒 ا 🖈	B 🗊 I	and the second s			
• Parameters		- *****			
On/Off					~
Radius	0'2 27/3	2"			¢
Power	2000.0				\$ \$
Surface brightnes	s				
Keep instance por	ver				
Color Type	Temper	ature			•
Temperature	6500.0				\$
Color				Color	•
IES file					
		9.IES			
Color space			sRGB		
Legacy gamma	1.0				¢
Orientation					
-0.0	\$ 0.0			0.0	\$

Figure 3: Adding an IES light profile to the IES-specific Octane light

Instance Color Texture

The **Instance Color** texture holds an image, and it prepares to map each pixel to geometric instance IDs.

	1+ II Prophil Standard II Wretrane I		
	- 🗆 X	🔟 OctaneRender Viewport - Rendering Done	- 🗆 ×
		과 🏝 승 🔒 🛯 승 🖈 🍯 🍓 🗑 📾 🕸 🗢 Beauty	-
		Smo/m: 18000/18000, Semple: 0.000M, Time: 0b00b-45 / 0b00b-45, Time left: 00:00-45 / 0b00b-00, GPU Mem (GPI: 0.304/	0,550
	Map #0 (Instance color) ×	Smy/pxx 13000/130000. Semp/sr 0.000M. Timer 00:00:45 / 00:00:45. Time lefts 00:00:45 / 00:00:45. STU Mam [63]: 0.304/ Taxx rgb 1, rgb64 0, grey 0, grey 15 0. Render stars 900 x 600. Zoom: 100%. Printitives/Meanles/Yoseks 12/100/0	
	Map #0		
	* Parameters		
	FilenameMyTextures\tenbytenpixels.png Reload		
Map #0 - 01 - Default - Diffuse m	Standard texture No Map		
	Num. sequence 0 +		
bitmap power outpress	Start frame 0 ‡		
bump	End condition Loop *		-
Ismon	Sequence playb 1.0 ‡		
o displacement	Channel Format Automatic •		
opacity			
transmission	Power 1.0 + Value •		
Q medium	Gamma 2.2 ‡		
emission			
	Camera mapped		1
	Bake input scale 5000.0 ‡		
	Bake input resol 512 \$ 512 \$		
		<	> .

Figure 1: A color texture map applied to instances with the Instance Color texture node

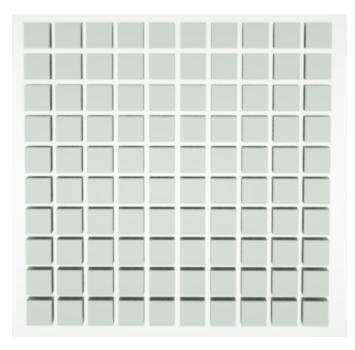


Figure 2: A cube and 99 instances of the same cube are shown here, forming a 10x10 grid of cubes

You can plug an image with 10×10 pixels into the Instance Color texture to match these dimensions. OctaneRender[®] maps each pixel and assigns them to the instance IDs.

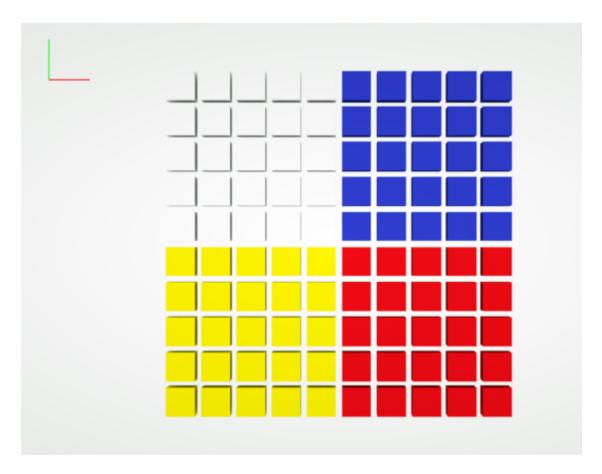


Figure 3: 10x10 grid with four colors

Instance Range Texture

Can be used with the **Gradient Texture** Node. The **Instance Range** texture holds a gradient color with the range of **0** - **Maximum ID**, and prepares this range to map to geometric instance IDs. This node has one attribute, **Maximum ID**, which corresponds to the total number of instanced geometry in the scene for which the **Material**¹ is applied.

¹The representation of the surface or volume properties of an object.

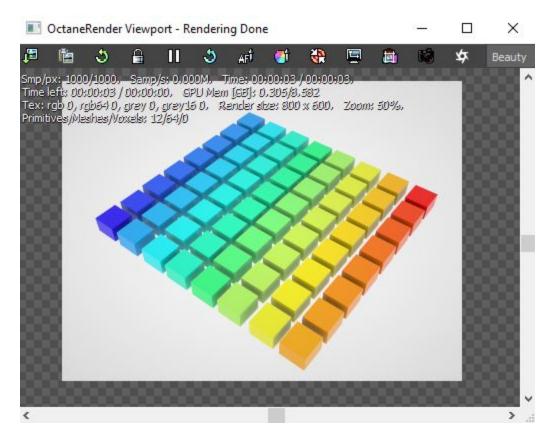


Figure 1: The Instance Range texture maps a Gradient onto a series of instanced cubes

You should set the Instance Range texture's **Maximum ID** parameter to the corresponding number of instances its Material is applied to in a scene.

Figure 2: The Maximum ID value set to a corresponding number of instances in a scene

Object instance IDs are set in an Object's **Octane Properties** window, which you can find in the **Quad** menu when right-clicking on an Object.



Figure 3: Specifying Instance IDs from the Octane Object Properties window

Marble Texture

The **Marble** texture is a **Procedural** texture that creates marble-like noise. It is similar to a **Turbulence** texture, but more fine-tuned to create marble-like patterns.

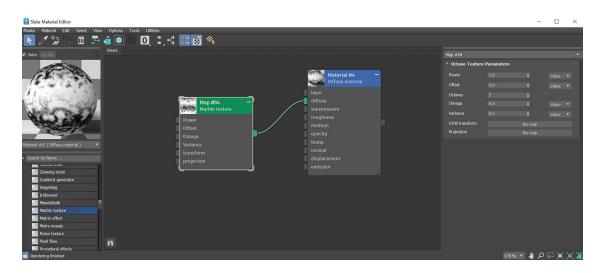


Figure 1: The Marble texture connected to a Diffuse material¹

Marble Texture Parameters

Power - Controls the texture's overall brightness.

Offset - Sets the texture position in 3D space.

Octaves - Number of intervals for finer texture scale.

Omega - Controls detail in the underlying fractal pattern.

Variance - Randomizes the Marble pattern.

UVW Transform - Positions, scales, and rotates the surface texture.

Projection - Sets how the texture projects onto the surface.

Noise Texture

The **Noise** texture map is useful for creating and controlling intentional noise. There are four noise types:

- Perlin Similar to the Turbulence node with Use Turbulence disabled.
- **Turbulence** Similar to the Turbulence node with **Use Turbulence** enabled.
- **Circular** Produces a Worley noise.
- Chips Produces a Voronoi noise.

¹Used for dull, non-reflecting materials or mesh emitters.

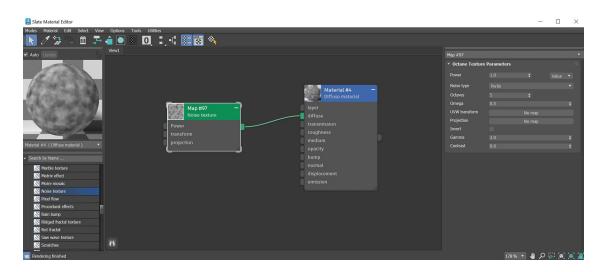


Figure 1: The Noise texture applied to a Diffuse material¹

Figure 2: Noise texture samples

Noise Texture Parameters

Power - Controls the overall brightness.

Noise Type - Select from four different noise generators.

¹Used for dull, non-reflecting materials or mesh emitters.

Octaves - Sets the noise detail's scale.

Omega - Controls the fractal pattern detail.

UVW Transform - Positions, scales, and rotates the surface texture.

Projection - Sets how the texture projects onto the surface.

Invert - Inverts the Noise texture values.

Gamma¹ - Adjust the Noise texture's luminance values.

Contrast - Adjusts the Noise detail sharpness.

OSL Texture

The **OSL** texture node is a scriptable node. You can write scripts using the OSL (**Open Shader Language**²) to define arbitrary **Texture** types to create customized OctaneRender[®] **Materials**³ and shaders. To learn about the generic OSL standard, read the OSL Readme and PDF documentation.

	Map #2 (OSL Textu	ire)	×
	Map #2		
Map #2	* Parameters		
OSL Texture	OSL Shader	Browse OSL	
· · · · · · · · · · · · · · · · · · ·	No shader.		

Figure 1: The OSL texture parameters

Random Color Texture

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

²A shading language developed by Sony Pictures Imageworks. There are multiple render engines that utilize OSL as it is particularly suited for physically-based renderers.

³A set of attributes or parameters that describe surface characteristics.

The **Random Color** texture is a **Grayscale** texture map that you can plug into a **Gradient** node to achieve random colors.

Map #60			▼
▼ Octane Texture I	Parameters		
Random seed			
• Octane Texture F	arameters		
Input	Map #60 (F	Random color texture)	
Interpolation type	Linear		•
Interpolation color	Physical		•
	\mathbf{A}		
Selected: #4. (Count	: 5)		
ТехМар		No map	
Color			
Position	0.97	\$	

Figure 1: Random Color parameters

It creates quasi-random float values between **0** and **1** that are constant, but different for instances of the same **Mesh**. You can set random seeds to control the beginning of an instance chain. This is useful in modifying instance colors that have the same **Material**¹, such as simulating different shades of green of instanced trees in a common scene.

¹The representation of the surface or volume properties of an object.

Figure 2: Random Color texture attached to a Gradient

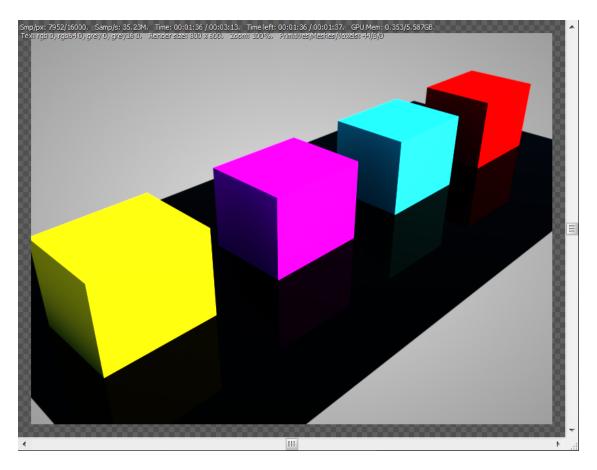


Figure 3: Random Color results

RGB Image

The **RGB Image** map imports external texture maps to any material parameters that accept a texture map.

Map #43			•
• Octane Texture F	Parameters		
Filename		None	Reload
Standard texture		No map	
Sequence digits			
Last file num			
Current filename			
Start frame			
End condition			
Seq. playback rate			
channelFormat	Automatic		•
imageChosenLaye	Default		•
iesPhotometryMode	Normalize pea	ak to 1.0	
legacyPngGamma			
Power	1.0		Value 🔻
Color space		sRGB	
Legacy gamma	1.0		
Invert			
Linear sRGB invert	¥		
UV transform		No map	
Projection		No map	
Border mode (U)	Wrap around		▼
Border mode (V)	Wrap around		•
Camera mapped			
Bake input scale	5000.0		
Bake input resolution	512 🗘	512	\$

Figure 1: The RGB Image node parameters

RGB Image Parameters

Standard Texture - Connects non-OctaneRender[®] Texture nodes to an OctaneRender material network.

Sequence Digits/Start Frame/End Frame/End Condition/Sequence Playback Rate - These refer to the advanced file sequence settings for **Image** textures and **Volume** objects. The **Sequence Digits** setting is applicable when a direct file sequence is used (not an **IFL**¹ file). The **End Condition** is applicable when an IFL file is used. The **Start Frame** and **Playback Rate** are used in both modes.

Channel Format - Indicates the preferred channel format for loading the image. This is ignored for 8-bit images.

Image Chosen Layer - Indicates the chosen layer name, if the current image has multiple layers.

IES² Photometry Mode - Determines how to normalize data from an IES file.

Legacy PNG Gamma³ - If true, PNG files with a gamma chunk will be converted to display gamma 2.2 while loading.

Power- Controls image brightness. Lower values cause the image to appear darker. When used as a Bump map, this setting alters the bump height on the surface.

Color Space - Determines the color space of the imported image.

Legacy Gamma - Controls the input image luminance, and it also tunes or color-corrects the image.

Invert - Inverts the texture values.

Linear sRGB Invert - Inverts the image after conversion to linear sRGB color space.

UV Transform - Positions, rotates, and scales the surface texture.

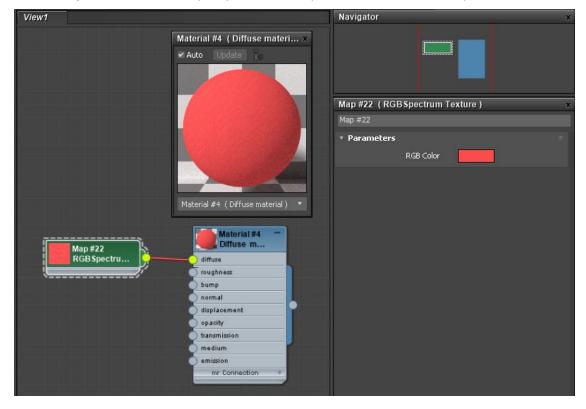
Projection - Accepts OctaneRender[®] **Projection** nodes. If nothing is connected to this input, the Image texture uses the surface's **UV** texture coordinates by default. This also changes the UV set if the original surface contains more than one UV set.

Border Mode - Sets the behavior of the space around the image if it doesn't cover the entire geometry. **Wrap Around** is the default behavior, which repeats the image in the areas outside the image's coverage. If you set

¹(Image File List) file is an ASCII file that constructs an animation by listing single-frame bitmap files to be used for each rendered frame. When you assign an IFL file as a bitmap, rendering steps through each specified frame, resulting in an animated map. (reference: https://knowledge.autodesk.com/support/3DS-max/learn-explore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-CA63616D-9E87-42FC-8E84-D67E1990EE71-htm.html)

²An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

³The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.


this parameter to **White Color** or **Black Color**, the area outside the image turns to white or black, respectively.

Camera Mapped - Sets the current rendering camera to project the image onto the surface.

Bake input scale -Affects only 3D texmaps. For example, 'Marble' is a 3D texmap, but 'Checker' is not. 5000 is fine with a default scene. With other scene units, objects size, etc, it might be necessary to adjust this scale.

Bake Input Resolution - These parameters provide an on-the-fly texture baking approach. OctaneRender® will render by using standard 3DS Max® CPU-calculated nodes and bake all **Textures**¹ every time it requests a scene translation. If there are many Textures with high-baking resolutions, this increases the scene translation time by a lot.

RGB Spectrum Texture

The **RGBSpectrum** texture map outputs the color specified in the **RGB Color** parameter.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Figure 1: RGB Spectrum texture

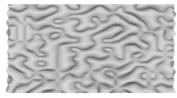
Ridged Fractal Texture

The **Ridged Fractal** texture produces a fractal pattern in grayscale format. This generates a memory-efficient Texture with ridged waves and fractal patterns.

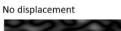
		Material #25 (Diffuse mater×	Map #1 (Ridge	ed fractal	texture)	R		x
Map #1 -	Material #25 - Diffuse m	Auto Update	Map #1 • Parameters					
power	diffuse roughness	655	Power					
offset	bump		Ridge height					
omega 🦵	o normal	WY SK THE ST	Octaves					
lacunarity	displacement	The second second	Omega				Value	
projection	transmission		Lacunarity				Value	
	medium	No the	UVW transform					
	emission	Material #25 (Diffuse material) 🔻	Projection					
		Material #25 (Dimuse material)						

Figure 1 : A Ridged Fractal texture node connected to a Diffuse material¹'s Diffuse² channel

Ridged Fractal Parameters

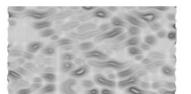

Power - Controls the texture's overall brightness.

Ridge Height - This specifies the height of the elevated parts of the fractal pattern.

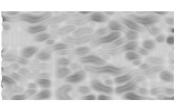

¹Used for dull, non-reflecting materials or mesh emitters.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

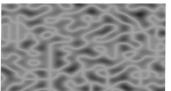
Displaced at Height = 2.0000



Ridge Height = 0

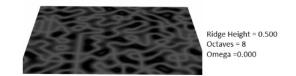


Ridge Height = 0


Ridge Height = 0.500

Ridge Height = 1

Ridge Height = 0.500



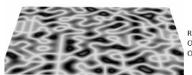

Ridge Height = 1

Figure 2: Ridge Height examples

Octaves - Controls the amount of detail in the texture.

Omega - This specifies the difference per interval.

Ridge Height = 0.500 Octaves = 8 Omega =1.000

Figure 3: Omega setting examples

Lacunarity - Controls the size of the gaps in the fractal pattern.UVW Transform - Controls the texture's position, scale, and rotation on the surface.Projection - Determines how the texture projects onto the surface.

Saw Wave Texture

The **Saw Wave** texture generates a memory-efficient wave texture with sharp jagged-edged patterns that can look like wood (figure 1).

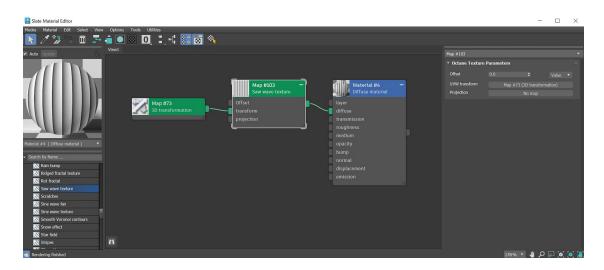


Figure 1: Saw Wave texture

Sine Wave Texture

The **Sine Wave** texture generates a memory-efficient **Texture** with simple, smooth wave patterns for marble or wood.

Slate Material Editor			-	
Node Mania Edit Select Vew Options Tools UNINES Image: I	Map #73			•
Marge #126 Since wave tookuite Sinc	Rotation Scale	YYZ 0.0 € 0.0 0.1 € 0.5 0.0 € 0.0	€ 0.0	
e Rendering finished		178 %	<u>م</u> کر ا) 🙆 🔕 🕌

Figure 1: The Sine Wave texture connected to a Diffuse material¹

¹Used for dull, non-reflecting materials or mesh emitters.

Triangle Wave Texture

The **Triangle Wave** texture generates a memory-efficient texture with sharp triangular wave patterns (figure 1).

Slate Material Editor			-		×
Modes Material Edit Select View	/ Options Tools Utilities				
📐 / 🕻 🖓 🖹 🟛 🎩	🔹 🔍 🔍 🐛 👯 🐷 🦄				
🖌 Auto Update	View1	Map #112			-
		 Octane Texture 	Parameters		
	t Material #4 -	Offset			
7/////////	Material #4 -	UVW transform			
	Map #73 layer 3D transformation	Projection			51
	Offset transform roughness				
	projection medium				
	projection				
Material #4 (Diffuse material)	bump				
	normal displacement				
Search by Name	emission				
Snow effect					
Star field					
Stripes Tile patterns					
Triangle wave texture					
Tripper					
Turbulence texture					
Volume cloud					
Woodgrain	n				
- Draiertian	≝				
💼 Rendering finished			178 % 🔻 🤚 🔎	2 0	💿 👹

Figure 1: The Triangle Wave texture connected to a Diffuse material¹

Turbulence Texture

The **Turbulence** texture creates many different effects based on banded noise. This flexible **Texture** can create wood, marble, flesh, and many other useful textures (figure 1).

¹Used for dull, non-reflecting materials or mesh emitters.

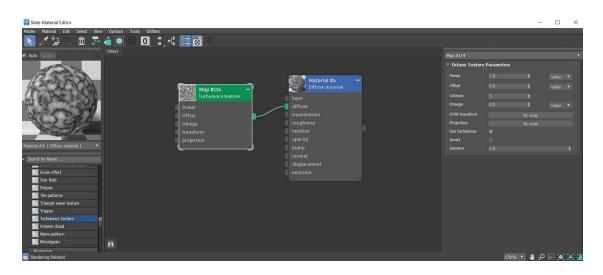


Figure 1: Turbulance texture parameters

Turbulence Texture Parameters

Power - Controls overall texture brightness.

Offset - Shifts the Turbulence pattern in 3D space.

Octaves - Sets the noise detail's scale.

Omega - Controls fractal pattern detail.

UVW Transform - Positions, scales, and rotates the surface texture.

Projection - Determines how the texture projects onto the surface.

Use Turbulence - Toggles the turbulent noise calculation, which multiplies against procedural noise.

Invert - Inverts the Noise texture values.

Gamma¹ - Adjusts the Noise texture's luminance values.

Color Vertex Attribute

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

The **Color Vertex Attribute** texture works in conjunction with the 3DS $Max^{(R)}$ Vertex Paint modifier. This Texture node displays vertex paint data on native OctaneRender^(R) Materials¹.

Your mesh object will need to apply the **Octane Geometry Properties** modifier to successfully read the MapChannel properties correctly.

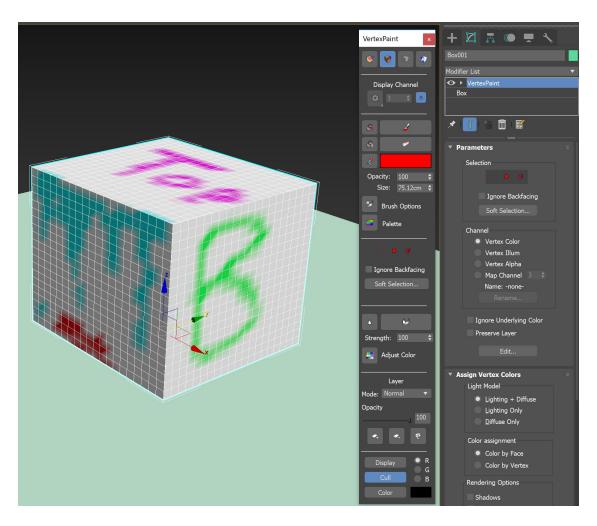


Figure 1: Using the Vertex Paint Modifier to paint color onto a cube surface

¹A set of attributes or parameters that describe surface characteristics.

Scene **Objects** display the Color Vertex Attribute node if you set them to **Movable Proxy¹** in the **Octane Object Properties** window.

Octane object properties	×
Cotane object properties	Movable proxy Image: Constraint of the second s
	Visibility 1.0 \$
1 Selected 🖌 a	iuto syni

Figure 2: Setting an object to Movable Proxy

After painting the Object surface with the Vertex Paint modifier, connect the Color Vertex Attribute node where appropriate in the Object's shader node network.

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

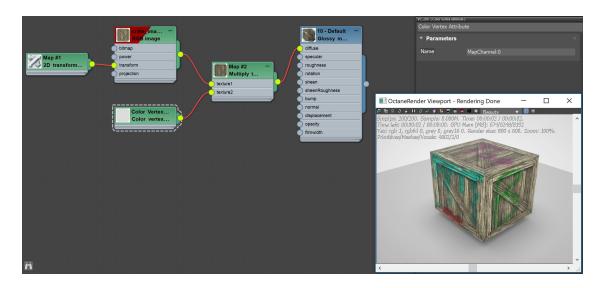


Figure 3: The Color Vertex Attribute node is mixed with a RGB Texture node

The Vertex Paint modifier's default **Map Channel** for storing the color data is **0**. Specify this in the Color Vertex Attribute node's **Name** parameter.

VC_ch0 (Color verte) Color Vertex /		×
• Paramete	ers	
Name	MapChannel:0	

Figure 4: Specifying the default MapChannel in the Color Vertex Attribute node

Grayscale Vertex Attribute

The **Grayscale Vertex Attribute** node operates similar to the **Color Vertex Attribute** node. The difference is that this node produces a float value from the vertex paint data to use for material attributes such as **Opacity**. Set the corresponding **Name** parameter to **MapChannel:-2** as the default channel for Opacity.

Your mesh object will need to apply the **Octane Geometry Properties** modifier to successfully read the MapChannel properties correctly.

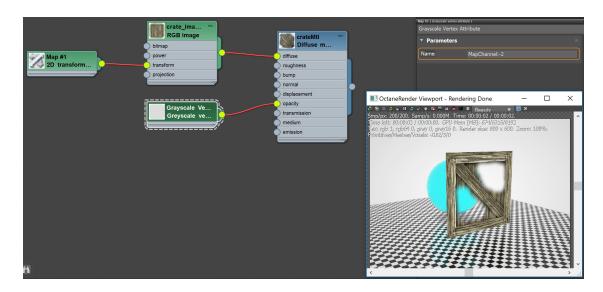
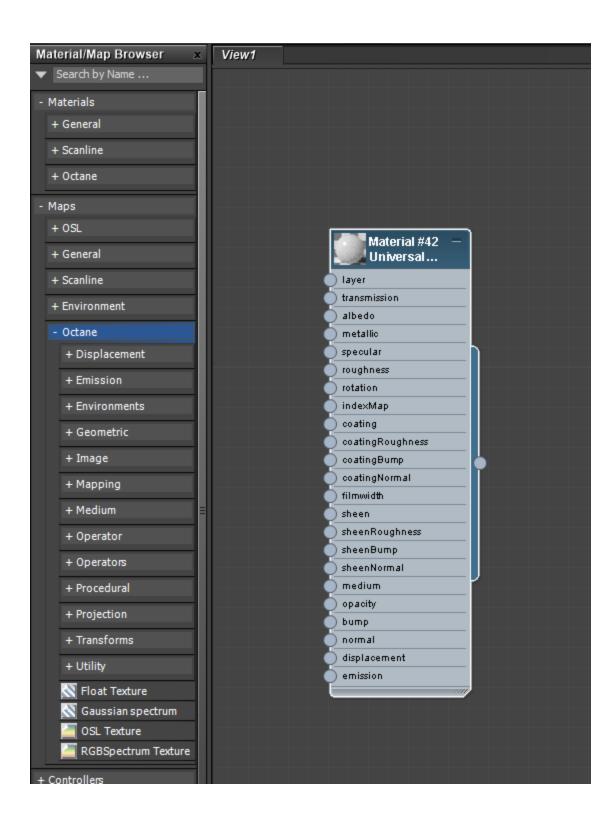



Figure 1: Setting the Grayscale Vertex Attribute node's Name parameter to -2

Texture Modifiers

Texture Modifiers provide a set of **Nodes** in the **Slate Material¹ Editor** that modify existing **Texture** maps. You can access these Nodes from the **Maps** rollout in the Slate Material Editor.

¹The representation of the surface or volume properties of an object.

Figure 1: Accessing OctaneRender Map nodes in the Slate Material Editor

Add Texture

The **Add** texture node adds two **Textures**¹ together. The calculation is similar to the Add Layer mode used in Photoshop[®] to add the color values of two layers. Figure 1 shows how the Add texture adds a red color to a **Ridged Fractal** texture. The result is that the dark parts of the Ridged Fractal pattern are tinted red.

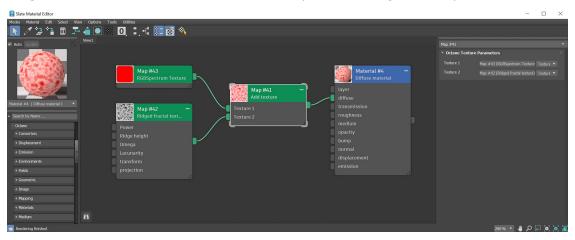


Figure 1 : An Add texture tints a Ridged Fractal texture with a red color

Clamp Texture

The **Clamp** texture requires a **Texture** input to have the Texture clamp with the **Minimum** and **Maximum** sliders.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

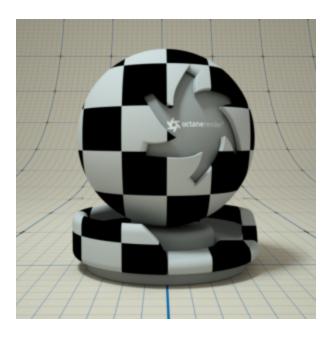


Figure 1: Clamp texture with settings Minimum = 0, Maximum = 0.5

Figure 2: Clamp texture with settings Minimum = 0.5, Maximum = 1.0

Color Correction

The **Color Correction** map adjusts typical image attributes for a **Texture** map with **Brightness**, **Hue**, **Saturation**, **Gamma**¹, and **Contrast** parameters.

Figure 1: The non-color corrected texture in the left Material² Preview window and the color corrected version on the right

Comparison

The **Comparison** texture uses a logical comparison operator to combine **Textures³**. The **Node** takes four inputs. The first two inputs are the Textures to compare. The second two inputs are the comparison results. In Figure 1, **Input A** is a **Noise** texture, and **Input B** is a **Gradient** texture that is mapped from a **Falloff** texture. The **Compare** texture looks at the color values of Inputs A and B. Wherever the color values of A are less than B, a green **RGB** texture maps to the surface. Wherever the color values of Input A are equal or greater than the values of Input B, a red RGB texture maps to the surface. This example is simple, but you can

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

²The representation of the surface or volume properties of an object.

³Textures are used to add details to a surface. Textures can be procedural or imported raster files.

create very complex Textures using the Compare texture, in particular when combined with other Compare textures.

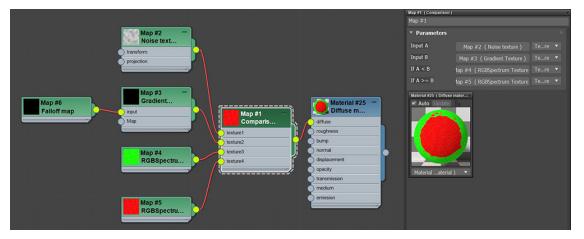
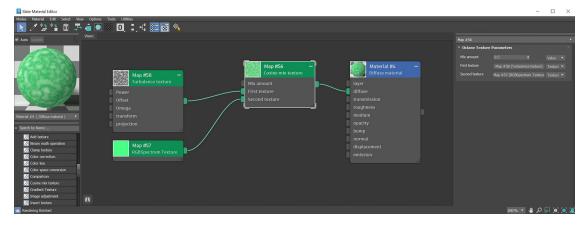



Figure 1: The Comparison texture uses a logical operator to compare two Textures and uses the result to compare two other Textures

Cosine Mix Texture

The **Cosine Mix Texture** mixes two textures together based on a cosine wave. In Figure 1, a **Turbulence** texture is combined with an **RGB Spectrum** using the **Cosine Mix Texture** that's connected to an Octane material's **Diffuse¹** component. The **Amount** slider balances the strength of the two textures.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Figure 1: A Cosine mix texture mixes a Turbulence texture and an RGB Spectrum texture

Dirt Texture

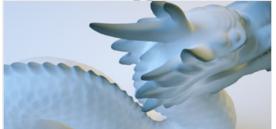
The **Dirt** texture creates different effects based on ambient occlusion calculations. This **Texture** always returns a random value and can simulate dirt, dust, or wear and tear.

Map #10 (Dirt te	exture)							х
Map #10								
* Parameters								
Strength	1.0							
Details	0.0							
Radius	1.0							
Radius map	1.0					Value		
Tolerance	0.0							
Spread	1.0							
Distribution	1.0							
Bias	0.0		0.0		1.0	¢		
Bias coordinate sp	Normal sp	ace					-	
Include object mode	All						•	
Invert normal								

This Texture is often plugged into the **Diffuse¹**, **Bump**, or **Transmission²** parameters.

Figure 1: Dirt parameters

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.


²A surface characteristic that determines if light may pass through a surface volume.

No Dirt

Dirt_1_1

Dirt_1_1_Inv

Dirt_1_20

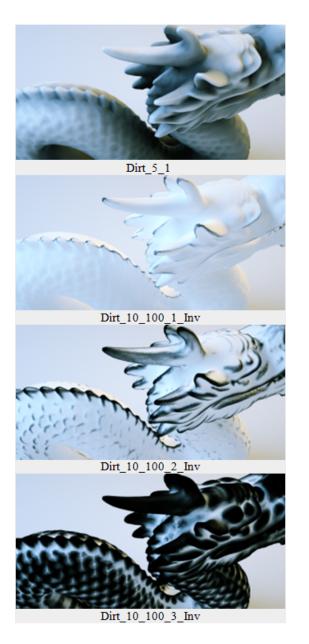


Figure 2: Dirt texture with differing Strength, Details, Radius, and Invert settings

Dirt Texture Parameters

Strength - Controls the Dirt intensity across the geometry surface.

Details - Controls the Details intensity.

Radius - Controls the dirt spread across the model's surface from the recessed parts towards the exposed parts.

Radius Map - Determines the proportion of the maximum area affected by the dirt texture.

Tolerance - Reduces black edges on rough tessellated meshes.

Spread - Controls the ray direction with respect to the normal of the surface. A value of 0 means the dirt direction is shot in the direction of the surface normal and a value of 1 shoots the dirt rays in all directions.

Distribution - Forces the rays to gather closer to the surface normal. A value of 1 is the equivalent to ambient occlusion on a diffuse surface. A value of 0 gathers the rays in the normal direction.

Bias - Any non-zero bias will be used as the shading normal to sample the dirt rays.

Bias Coordinate Space - Determines the coordinate space for the bias vector.

Include Object Mode - By default the mode is set to All, which considers all object intersections in the dirt calculation. If Self is selected, then only the ray-intersection with other objects is used for the dirt calculation.

Invert Normal - Reverses the Dirt texture effect based on the normal surface direction.

Falloff Map

The **Falloff** map blends two **Materials**¹, depending on the viewing angle of the material's geometry. This helps simulate, for example, coating effects visible in car shaders, or layered effects visible in velvet cloth or frosted glass.

This also mimics architectural glass for **Glossy²** and **Specular³** materials by plugging the Texture into the **Material⁴** node's **Opacity** channel, letting light pass through based on the Falloff texture.

¹A set of attributes or parameters that describe surface characteristics.

²The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

³Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

⁴The representation of the surface or volume properties of an object.

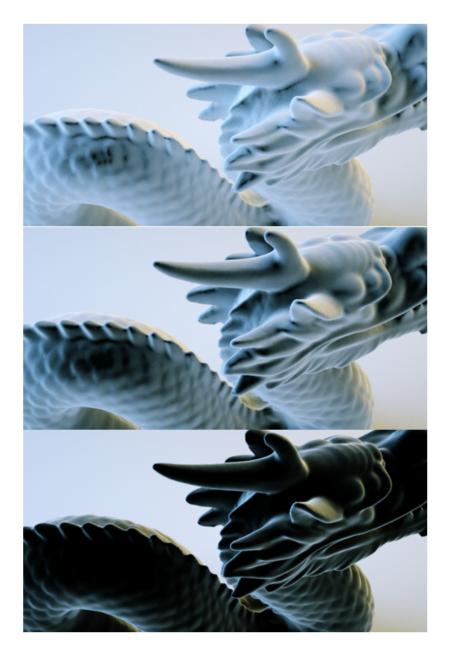


Figure 1: The Falloff map varies the surface's color, depending on viewing angle

Map #6 (Falloff	map)				x
Falloff Map					
* Parameters					
Mode	Norma.	e ray			
Minimum value	0.0				
Maximum value	1.0				
Falloff skew factor	6.0				
Falloff direction	0.0		1.0	\$ 0.0	

Figure 2: The Falloff map parameters

Falloff Map Parameters

Mode - Provides directional options for the falloff: Normal vs. Eye Ray, Normal vs. Vector 90 Degrees, and Normal vs. Vector 180 Degrees.

Minimum Value - Controls the blending distance from the falloff edges.

Maximum Value - Controls the blending distance from the camera-facing surface to the edge.

Falloff Skew Factor - Controls the area where the Min and Max values converge.

Falloff Direction - Controls the falloff's orientation if the Mode is set to Normal vs. Vector 90 Degrees or Normal vs. Vector 180 Degrees.

Invert Texture

The **Invert** texture map reverses the colors or values in a **Texture** or **Procedural** map. In the example below, the Invert texture map flips the black-and-white areas of a **Checks** texture map.

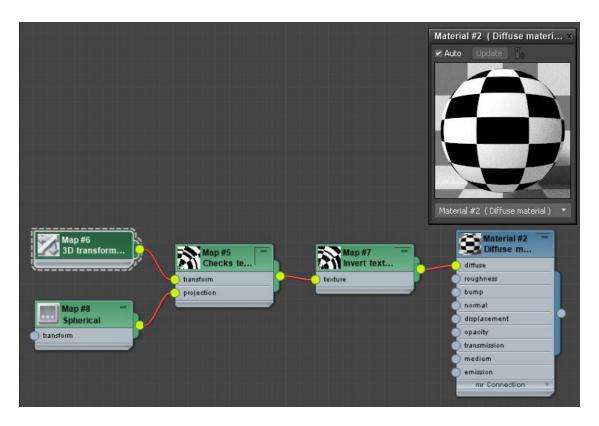
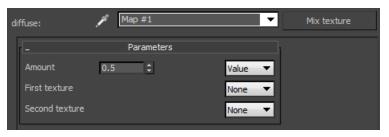



Figure 1: Invert texture used on a Checks texture

Mix Texture

The **Mix** texture mixes two **Textures**¹ together with a value, **Color**, or **Texture** map. Values in-between blend the two textures together in a linear fashion.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Figure 1: Mix texture parameters

In the example below, a Mix texture blends the **Marble** texture map with a **Checks** texture map . The **Blend** value is set to **0.05**.

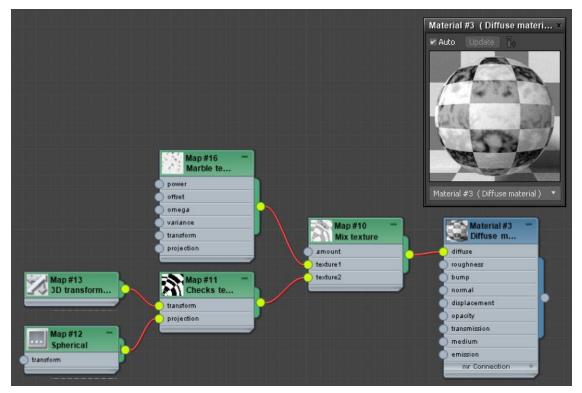


Figure 1: A Mix texture blending Marble and Checks textures together

Multiply Texture

The **Multiply** texture mixes two **Textures¹** or colors together by overlaying them. Similar to placing two slides over each other, all the values in the image are multiplied. In the example below, the chestnut **RGB** image is multiplied by a **Marble** texture.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

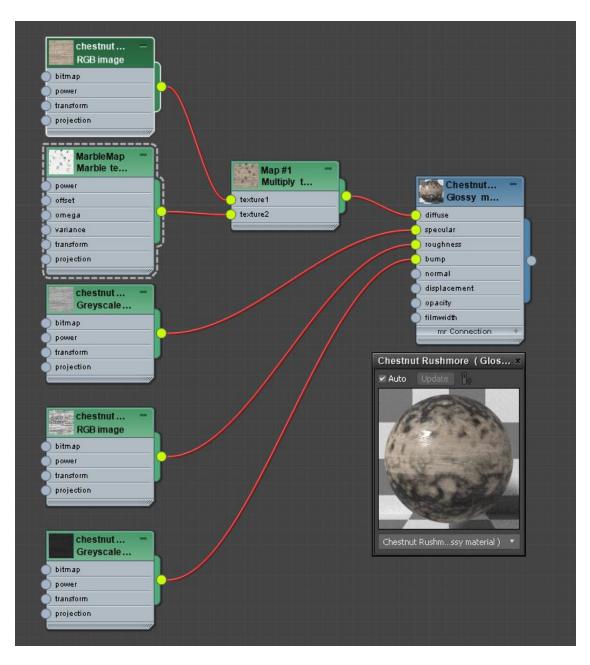


Figure 1: A Marble texture multiplying a chestnut RGB image texture

Polygon Side

The **Polygon Side** texture renders white on the front face and black on the backface of a polygon. You can use this for backface culling by putting this **Texture** into the **Opacity** channel. You can create double-sided **Materials¹** by placing it into a **Mix** material, or create double-sided **Textures**² by placing it into a **Mix** texture.

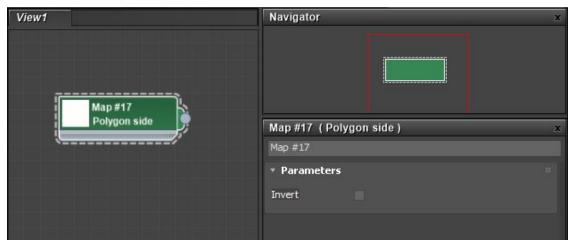


Figure 1: Polygon Side parameters

Subtract Texture

The **Subtract** texture subtracts the value of one **Texture** from another, similar to the Subtract Layer mode in Photoshop[®].

¹A set of attributes or parameters that describe surface characteristics.

²Textures are used to add details to a surface. Textures can be procedural or imported raster files.

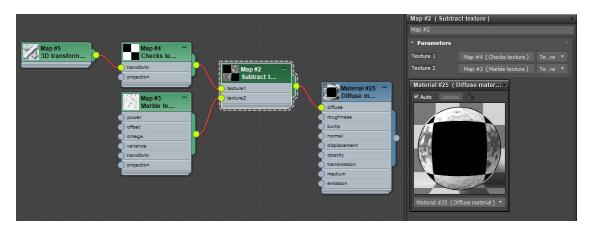
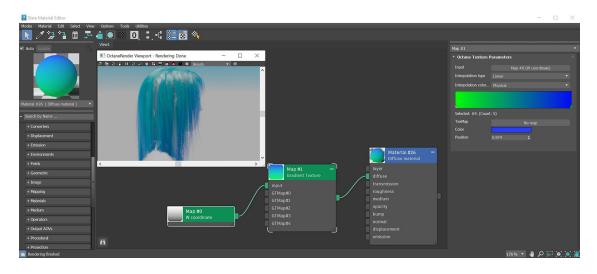


Figure 1: The Subtract texture subtracting parts of a Marble texture with a Checks texture

W Coordinate

The **W Coordinate** texture accesses the OctaneRender[®] W coordinate system, which places **Gradients** on hair geometry. This is where you store inherent hair gradient interpolation, along with hair data exported from other 3D modelling applications. It takes into account the basis of the interpolation set in the **Octane Global Preferences** tab.

You must generate the W with a supported third-party plugin for this to work. When using the W Coordinate texture, make sure the **Enable Custom Hair Ws** option is enabled in the **Octane Global Preferences** tab. When you set **W Coordinate Map** as **Gradient Texture** input for hair material, the Texture uses thirdparty-generated Ws instead of automatic Ws from the host application.


X

Tools	Preset Info)									
Ma	ain Settings	Viewport	Materia			Prev. Versi			Corona, Std		Flow, Std
	Phoenix, FP,	TF, Hair, RC		Trouble Shoc	ting		Kernel	Default	Us	er Inte	rface
	Fores	st Pack									
	and the second second second	ort type (Default)									
					Direct						
		ID settings (Defau			None					•	
		om FP object (Def			~						
		c info on object cl			~						
Fo	rest Pack Clipp	ing for Viewport (Default)		Extende	d				•	
Fo	rest Pack Clipp	ing for Normal Re	nder (Defa	ult)	~						
Fo	rest Pack Clipp	ing for Export (De	efault)		~						
Fo	rest Pack Mate	rial scale (Default)			50.0						
	0										
		trix									
	ain UV Channel				0						
		air Ws [Default]									
Ha	ir Gradient Int	erpolation [Defaul	t]		Segmen	t count					
Ig	nore Ornatrix (Changes type 1 [D	efault]		~						
Vt	x Color channe	l assignment [Def	ault]		R,G,B						
Sp	ecify Ornatrix ^v	Version									
Sp	ecified Ornatri	x version									info
		w w									info
Ту	Flow particles	User ID settings (I	Default)		None					•	
Cr	eate default pa	rticle [Default]			~						
tys	Splines always	dynamic [Default]			~						
· ··											

3 Octane Preferences - OctaneRender 2023.1 - 14.03 (OctaneRender Studio+ 2023.1)

Figure 1: Setting the Hair Gradient Interpolation in the Octane Global Preferences

When you designate the W Coordinate texture as the **Input** texture of a **Gradient** texture, it tells OctaneRender to render the inputs as a gradient mapping based on either the hair length or the segment count per strand.

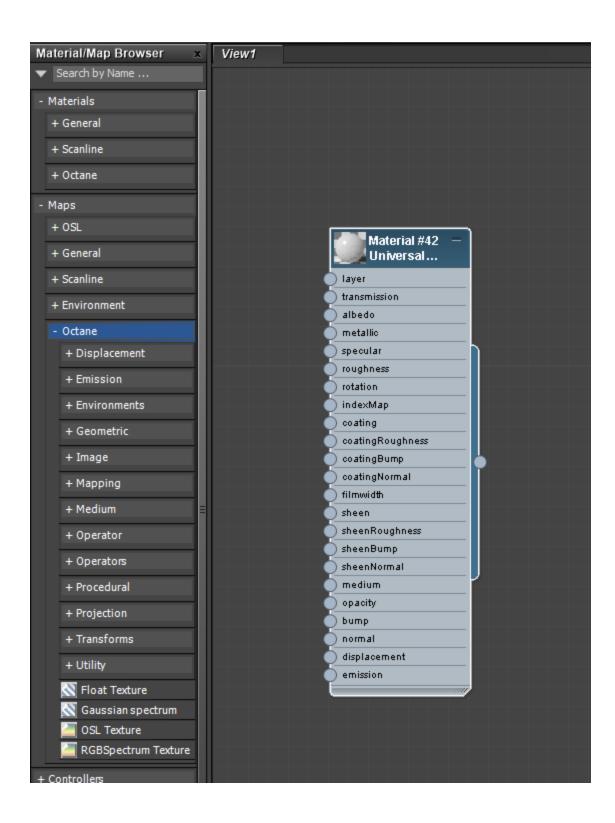


Figure 2: Hair segments with the W Coordinate coordinate applied to a Gradient Texture node

Transforms

Transforms provide a set of **Nodes** in the **Slate Material¹ Editor** that move, scale, and rotate **Texture** maps on an Object's surface. You can access these Nodes from the **Maps** rollout in the Slate Material Editor.

¹The representation of the surface or volume properties of an object.

Figure 1: Accessing Map nodes in the Slate Material Editor

2D Transformation

2D Transformation sets the orientation of other **Textures**¹. It connects to the **Transform** input pin on any given **Texture** map. It provides planar positioning with Texture maps - unlike the **3D Transformation** node, which provides positioning on all three axes.

Map #6 (2D transformation) ×									
2D Transform Map									
* Parameters	;								
Rotation	0.0								
Scale	1.0	\$ 1.0							
Translation	0.0	\$ 0.0							

Figure 1: The 2D Transformation node

3D Transformation

3D Transformation sets the orientation of other **Textures**². It connects to the **Transform** input pin on any given Texture map. It provides true 3D positioning of Texture maps - unlike the **2D Transformation** node, which only provides planar positioning for Texture maps.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.
²Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Map #1 (3D transformation)							
3D Transform Map							
* Parameters							
Rotation order	YXZ						
Rotation	0.0		0.0		0.0		
Scale	1.0		1.0		1,0		
Translation	0.0		0.0		0.0		

Figure 1: The 3D Transformation node

Rotation

The **Rotation** map modifies rotational data for a **Projection** map (**Box**, **Cylindrical**, etc.). In the following example, the Rotation map connects to the **Spherical** map, which determines the Projection of a **Checks** map.

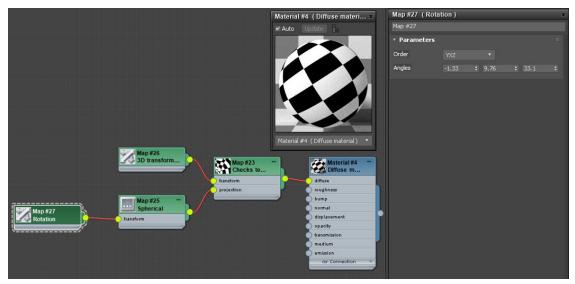


Figure 1: A Rotation map connected to a Spherical map

Scale

The **Scale** map controls a **Projection** map's transform data. In the following example, the Scale map connects to the **Spherical** map, altering the **Scale** parameter's **X** data by **5** units.

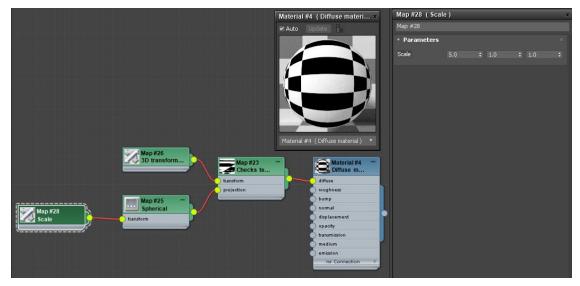
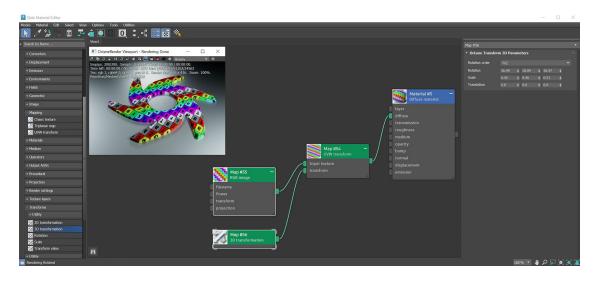



Figure 1: A Scale map connected to a Spherical map

UVW Transform

The **UVW Transform** texture takes an **Input** texture and applies a map to transform the Input texture's UV layout on top of the Input texture's own UV coordinate transformation (figure 1).

Figure 1: The UVW Transform texture applied to the Octane logo on top of the logo's exist-ing UV coordinates

The UVW Transform texture works with other mapping textures like the **Triplanar** map texture, **Mix** texture, **Cosine Mix** texture, the logical Texture maps (**Comparison**), or arithmetic Texture maps (**Add**, **Subtract**, **Multiply**).

Transform Value

Transform Value sets the other **Textures**¹' orientation. It connects to the **Transform** input pin on any given **Texture** map and provides true 3D positioning for Texture maps, unlike the **2D Transformation** node, which provides planar positioning for Texture maps.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

	Map #9 (Transform value) ×							
Transform Va Transform va	Transform Value							
	• Parameters	▼ Parameters						
	rotationOrder	YXZ	YXZ					
	rotation	0.0		0.0		0.0		
	scale	1.0		1.0		1.0		
	translation	0.0		0.0		0.0		

Figure 1: Transform Value parameters

Projections

Projections¹ are a set of **Nodes** in the **Slate Material² Editor** that orient **Texture** maps on an Object's surface. You can access these Nodes from the **Maps** rollout in the Slate Material Editor.

¹Methods for orienting 2D texture maps onto 3D surfaces.

²The representation of the surface or volume properties of an object.

Slate Material Editor	- 🗆 ×
Modes Material Edit Select New Options Tools Utilities	
💫 🖉 🕾 🖬 📮 🍙 🔘 🔍 💵 🏭 🐻 🛇	
- Search by Name View1	
- Maps	
+ 091	
+ General	
+ Sarline	
+ Environment	
- Octane	
+ Converters	
+ Displacement	
+ Emission	
+ Environments	
+ Fields	
+ Geometric	
+ Image	
+ Napping	
+ Materials	
+ Medum	
+ Operators	
+ Output AOVs	
+ Procedural	
Projection Unity	
🕅 Color to UVW	
with the second se	
S Distorted mesh UV	
S MatCap	
Mesh UV projection	
I CS. desiyd UV	
Perspective	
Simple pos. to UV	
🔹 Rendering finished	178% 🔻 🤚 🔎 💭 🍥 🌘 🧾

Figure 1: Accessing Map nodes in the Slate Material Editor

Box

The **Box** map is also known as cube mapping. This **Projection** is an extension of **XYZ To UVW** mapping. It picks a different Projection axis, depending on the normal. This gives a quick way to map a **Texture** on any **Object** without too much distortion, but with a lot of possible seams.

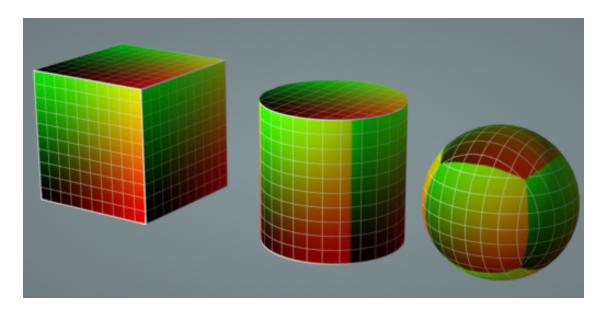
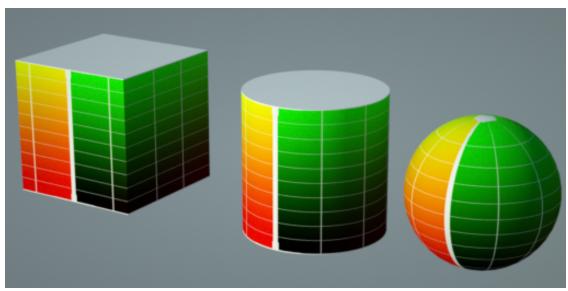



Figure 1: Box maps

Cylindrical

Cylindrical mapping wraps **Texture** maps on a surface with a cylindrical shape.

Figure 1: Cylindrical maps

Mesh UV Projection

The **Mesh UV** projection has a single parameter to extract a specified **UV Set** from the applicable **Mesh**.

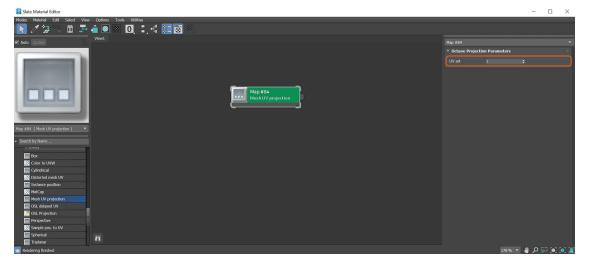


Figure 1: Mesh UV Set parameter

OSL Projection

The **OSL** projection node is a scriptable **Node** where you write OSL (**Open Shader Language**¹) scripts using the defined arbitrary **Projection** types. It works similar to an **OSL** texture node, but connects to a **Projection** input. To learn about the generic OSL standard, information is provided from the OSL Readme and PDF documentation.

¹A shading language developed by Sony Pictures Imageworks. There are multiple render engines that utilize OSL as it is particularly suited for physically-based renderers.

Figure 1: The OSL Projection parameters

OSL Delayed UV

The **OSL Delayed UV** projection node is a scriptable **Node** where you write OSL scripts using the defined **UV** projection type.

Figure 1: The OSL UV projection does not have any specific parameters

Perspective

Perspective mapping takes the world space coordinates and divides the X and Y coordinates by the Z coordinate (Figure 1). One way this is useful is by using a texture with this projection as the distribution, with black border mode. You can also use it for camera mapping.

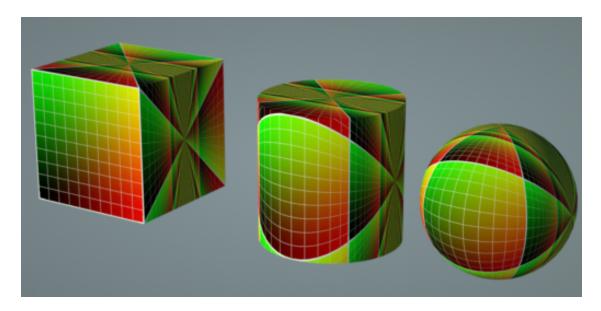


Figure 1: Perspective maps

Spherical

The **Spherical** map is used for **Environment** textures and **IES**¹ Light distributions. It performs latitude-longitude mapping for the U and V coordinates, and for **Procedural** textures, the W coordinate is the distance from the origin.

¹An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

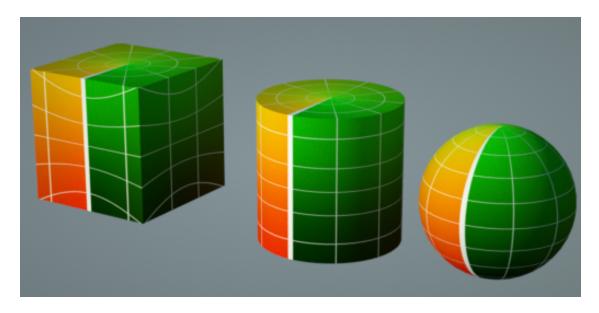
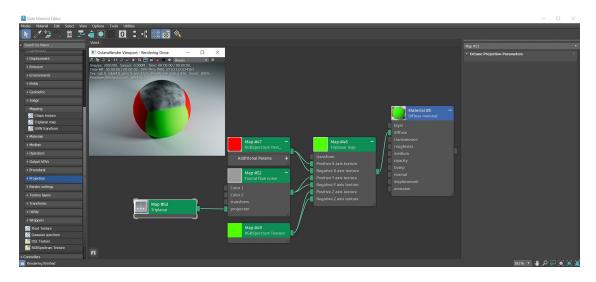



Figure 1: Spherical maps

Triplanar Projection

The **Triplanar Projection** works in conjunction with a **Triplanar Map**. It takes the coordinates in world or object space and will pick the projection axis depending on the active axis of the Triplanar map node. This gives a quick way to map a texture on any object, and presents the possibility for texture transforms local to each projection axis. The Triplanar map node has six input pins representing the positive and negative X, Y, and Z planes. You can map the same or different texture nodes to each of these input pins.

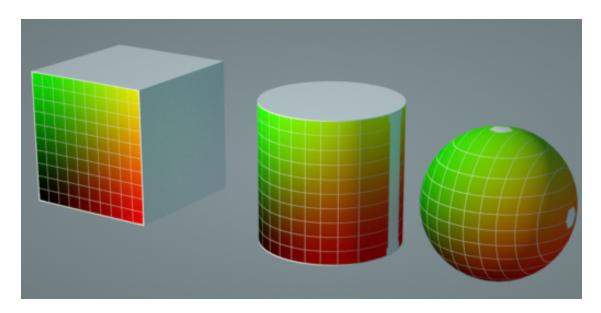


Figure 1: The Triplanar projection node connected to the Projection input on a Fractal Flow Noise node

XYZ To UVW

The **XYZ To UVW** map is also known as planar projection or flat mapping. This **Projection** map takes the coordinates in world or object space and use them as UVW coordinates. For images, only the X and Y coordinates are relevant, which are mapped to U and V. In other words, the images project flat mapping along the Z axis.

Rotating the mapping around the Z axis rotates the image around the center, as the UVW rotation would do.

Figure 1: XYZ To UVW map

Emissions

Emission nodes provide a set of **Nodes** in the **Slate Material¹ Editor** that generate illumination from an object's surface. You can access these nodes from the **Maps** rollout in the Slate Material Editor (Figure 1).

Figure 1: Accessing Emission map nodes in the Slate Material Editor

¹The representation of the surface or volume properties of an object.

Black Body Emission

The **Black Body¹** emission map lets materials emit light. **Emission** maps work with the **Diffuse²** material type and connect to the **Emission** slot. There are two type of emission maps: the **Black Body** (figure 1) emission, and the **Texture** emission map.

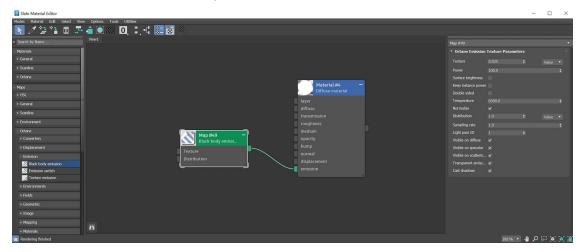


Figure 1: The Black Body emission node connected to a Diffuse material³'s Emission slot

The Black Body emission uses **Temperature** (in Kelvin) and **Power** to control the light's color and intensity.

¹An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

³Used for dull, non-reflecting materials or mesh emitters.

Map #1 (Black body emission) ×							
Map #1							
* Parameters							
Texture	0.025		Value	-			
Power	100.0						
Surface brightness							
Keep instance power							
Double sided							
Temperature	6500.0						
Normalize	¥						
Distribution	1.0		Value	•			
Sampling rate	1.0						
Light pass ID							
Visible on diffuse	¥						
Visible on specular	¥						
Transparent emiss	×						
Cast shadows	×						

Figure 2: The Black Body emission node parameters

Black Body Parameters

Texture - Sets the light source's efficiency to either a value or texture. Keep in mind that real-world lights aren't 100% efficient at delivering power at their specified wattage - a 100-watt light bulb doesn't deliver 100 watts of light. This parameter enters the real-world values.

Power - The light source's wattage. You should set each light to their real-world wattage - for example, set a desk lamp to **25** watts, a ceiling lamp to **100** watts, and an LED light to **0.25** watts.

Surface Brightness - Causes emitters to keep a constant Surface Brightness, independent of the emitter's surface area.

Keep Instance Power - Enabling this option with Surface Brightness disabled and Uniform Scaling applied to the object causes Power to remain constant.

Double Sided - Allows emitters to emit light from the front and back sides.

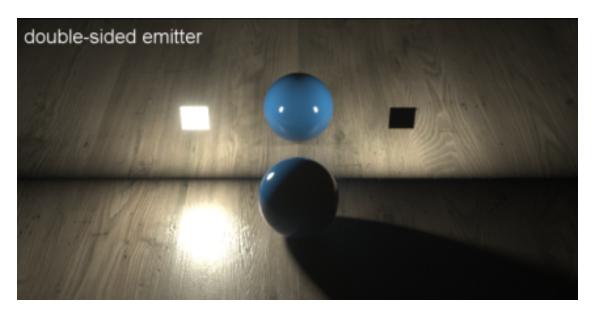


Figure 3: Comparison of the Double Sided parameter when enabled and disabled

Temperature - The temperature (in Kelvin) of the Black Body emission's emitted light.

Normalize - Ensures all the normal vectors have the same length for the Black Body emission to keep the luminance of the Black Body's emitted light constant if the temperature varies.

Distribution - Controls the light pattern. This can be set to an **Image** (**Grayscale** or **RGB**) so you can load an Image texture or **IES**¹ file. The Image texture's **Projection** map then adjusts the light's orientation or direction.

Sampling Rate - Choose what light sources receive more samples. Adjusting the light source Sampling Rates in the scene leads to a better balance between light sources. You can set the Sampling Rate to **0**, which means the direct light calculation excludes the emitter.

Light Pass ID - The ID for the light pass that captures the emitter's contribution. It works with the Light Pass ID render element.

Visible On Diffuse - Makes the light source visible on diffuse surfaces. This is enabled by default. You can enable or disable the Black Body or Texture emission's light sources from casting illumination or shadows on **Diffuse** objects. Disabling this option disables emission - it isn't visible in diffuse reflections, but it is visible in specular reflections. It is also excluded from the direct light calculation.

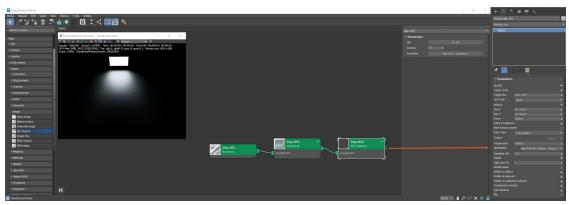
¹An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

Figure 4: The Visible On Diffuse option when enabled and disabled

Visible On Specular¹ - Makes the light source visible on specular surfaces. This is enabled by default. You can hide emitters on specular reflections or refractions only.

Figure 5: The Visible On Specular option when enabled and disabled

Transparent Emission - Lets the light source cast illumination on Diffuse objects, even if the light source is on a **Transparent** material.


Cast Shadows - Enables the light source to cast light and shadows on diffuse surfaces, and it disables direct light shadows for **Mesh** emitters. This option has an effect if the emitter is included in the direct light calculation, or when the Sampling Rate is greater than **0**. This option is enabled by default.

Note: Most of the Emission parameters are common between Texture and Black Body emissions. The main difference is if the color comes from the Black Body temperature, or from the Diffuse material's texture settings.

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

IES Texture

The **IES¹** texture uses an IES profile as an illumination source. IES profiles can be added to light emitting geometry using the **Black Body²** and **Texture** emission nodes or to an Octane light using the **Distribution** input. There is also an Octane-specific **IES Light** available in the Octane light category of the Command panel.

An IES profile can be added to an Octane Light using the **Distribution** input (figure 1).

Figure 1: Adding an IES light profile to an Octane light

The **IES Texture** can be added to a geometry object as well. Create a plane object and connect an Octane **Diffuse**³ material to the plane. The **IES Texture** node can be added to the **Distribution** input on both a **Black Body** & **Texture** emission node (figure 2).

¹An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

²An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

³Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

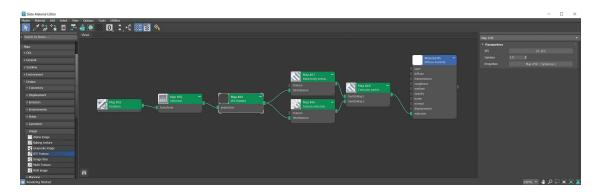


Figure 2: The Emission Switch node is used to connect both a Black Body & a Texture emission node to the Emission input on a Diffuse material¹

The IES-specific Octane light has an input for an IES light profile to be added (figure 2). This input does not require the use of the **IES Texture** node.

¹Used for dull, non-reflecting materials or mesh emitters.

+ 🖾 🖪		<u>ب</u> ع			
OctaneIESLight_(01				
Modifier List					•
Object					
? ا🌒 ا 🖈	B 🗊 I	-			
• Parameters		- *****			
On/Off					~
Radius	0'2 27/3	2"			\$
Power	2000.0				¢ \$
Surface brightnes	s				
Keep instance por	ver				
Color Type	Temper	ature			•
Temperature	6500.0				\$
Color				Color	•
IES file					
		9.IES			
Color space			sRGB		
Legacy gamma	1.0				¢
Orientation					
-0.0	\$ 0.0			0.0	\$

Figure 3: Adding an IES light profile to the IES-specific Octane light

Texture Emission

The **Texture** emission makes a **Mesh** behave as a light source. Use it with a **Diffuse¹** material type connected to the **Emission** parameter. This allows any valid texture type to set the light intensity. You can use this to create effects such as TV screens by using an image texture as the source.

		Material #27 (I	Diffuse mater	ial)		x
		Material #27				
	~	* Parameters				
	Material #27 –	Diffuse			Color	
	Diffuse m	Roughness	0.0 \$		Value	
	diffuse	Bump			None	
	bump	Normal			None	
Map #18 -	normal	Displacement		No Map		
Texture e	displacement	Opacity	1.0 ‡		Value	
efficiency or texture	opacity	Smooth	~			
distribution	transmission medium	Rounded edges	0.0 ‡			
	emission	Transmission			None	
	j.	Medium		No Map		
		Emission	Map #	18 (Texture em	ission)	
		Shadow catcher				
			Export Octar	e material		

Figure 1: The Texture emission node connected to a Diffuse material²'s Emission slot

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Used for dull, non-reflecting materials or mesh emitters.

Map #17 (Texture emi	ssion)	x
Map #17		
* Parameters		
Texture		None 🔻
Power 100.0		
Surface brightness		
Keep instance power		
Double sided		
Distribution 1.0		Value 🔻
Sampling rate 1.0		
Light pass ID 1		
Visible on diffuse 🖌		
Visible on specular 🖌		
Transparent emiss 🖌		
Cast shadows 🖌 🖌		

Texture Emission Parameters

Figure 2: Texture emission parameters

Texture - Sets the light source's efficiency. No light is 100% efficient at delivering the power at the specified wattage. The efficiency setting accepts a value, **Color**, or Texture map.

Power - This is the wattage of the light source. Each light in the scene should be set to its real-world wattage. This power is multiplied by the Texture input, where **1.0** means 100% of the power. By default, **0.025** means 2.5%, which gives 2.5 watts of light).

Surface Brightness - Causes emitters to keep a constant Surface Brightness, independent of the emitter surface area.

Keep Instance Power - Enabling this option with Surface Brightness disabled and Uniform Scaling applied to the object causes Power to remain constant.

Double Sided - Makes the emitter emit light from the front and back sides.

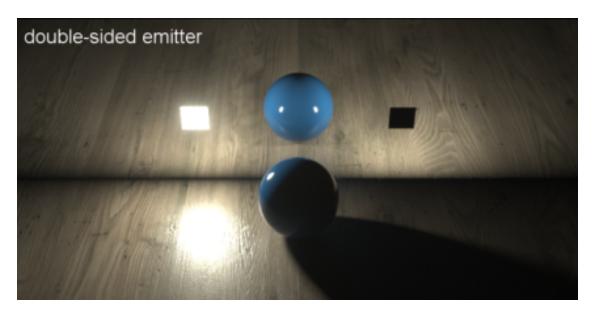


Figure 3: The Double Sided parameter when enabled and disabled

Distribution - Controls the light pattern. You can set this to an Image (**Grayscale** or **RGB**) so it can load an Image texture or **IES**¹ file. The Image texture's **Projection** map adjusts the light's orientation and direction.

Sampling Rate - Allows you to choose what light sources receive more samples. Adjusting the light source sampling rates in the scene leads to a better balance between light sources. You can set the **Sampling Rate** to **0**, which means the direct light calculation excludes the emitter.

Light Pass ID - The ID of the light pass that captures the emitter's contribution. It works with the Light Pass ID render element.

Visible On Diffuse - Makes the light source visible on diffuse surfaces. This is enabled by default. This allows you to enable or disable the **Black Body²** emission or Texture emission light sources from casting illumination or shadows on **Diffuse** objects. Disabling this option disables Emission, meaning it's visible in diffuse reflections, but is still be visible in specular reflections. It's also excluded from the direct light calculation.

¹An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

²An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

Figure 4: The Visible On Diffuse parameter when enabled and disabled

Visible On Specular¹ - Makes the light source visible on specular surfaces. This is enabled by default. You can hide emitters on just specular reflections and refractions.

Figure 5: The Visible on Specular parameter when enabled and disabled

Transparent Emission - Lets the light source cast illumination on Diffuse objects even if the light source is on a **Transparent** material.

Cast Shadows - Lets the light source cast light and shadows on diffuse surfaces, and disables direct light shadows for Mesh emitters. This option has an effect if the emitter is included in the direct light calculation, or when the **Sampling Rate** is greater than **0**. This option is enabled by default.

Texture Environment

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

The **Texture** environment affects the environment's illumination and color. This map adds an **HDRI¹** environment texture to the scene for illumination. In the example below, the **Texture Environment** map is added to the **Environment Map** parameter in the 3DS Max[®] **Environment** panel.

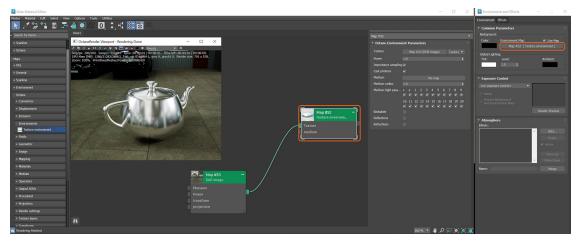


Figure 1: A HDRI map used for the Texture environment

Texture Environment Parameters

Texture - Specifies the HDR image to be used. The following parameters adjust the look of the HDRI image's lighting. Since the texture environment uses an RGB Image texture, these settings are the same as those found in the RGB Image node.

Power - Adjusts the scene brightness. We recommend leaving this set to 1 and use the Power setting to brighten or dim the lighting.

Importance Sampling - Enables quicker convergence (noise reduction) for HRDI images by applying importance to certain areas of the HDRI, which prioritizes areas to resolve sample rays more often than other areas.

Cast Photons - If photon mapping is used, this will cast photons from the bright areas of a HDRI map.

Medium - This parameter accepts an **Absorption**², **Scattering**³, or Volume medium node to create volume/fog effects across the scene. For more information, see the Volume Fog Effects topic under the Effects Overview category in this manual.

¹An image which presents more than 8 bit per color channel unlike most common image formats.

²Defines how fast light is absorbed while passing through a medium.

³Defines how fast light gets scattered when traveling through the medium.

Medium Radius - Adjusts the medium's scale.

Medium Light Pass mask - Enables or disables lights on the scattering environment medium.

Backplate - Generates a cutout rendering where foreground elements are positioned in the scene.

Reflections - Generates the Planetary environment in scene object reflections.

Refractions - Generates the Planetary environment in scene object refractions.

Texture Displacement (v2021)

Texture Displacement¹ mapping utilizes a **2D** texture map to generate 3D surface relief. As opposed to **Bump** and **Normal** mapping, displacement mapping creates depth, and it displaces the actual geometric position of points over the textured surface. It typically goes into the **displacement** input of a material.

Map #16 (Textur	e displacement)			х				
Map #16								
* Parameters								
Texture			None					
Mid level	0.0							
Level of detail	1024x1024							
Height	0.001							
Displacement direc	Follow vertex normal							
Filter type	None							
Filter radius	2							

Figure 1: Texture Displacement Parameters

Displacement mapping requires **Objects** to have UV coordinates, either with a typical **Projection** type, or unwrapped. Displacement in OctaneRender[®] is not compatible with **Bump** or **Normal** mapping. You can't use

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

8192 x 8192

Displacement together with a Normal or Bump map on the same Material¹. Rendering a Material with Normal and Bump maps along with a Material that has the Displacement generates artifacts.

Displacement Parameters

Texture - This parameter accepts Displacement maps generated in other 3D programs.

Mid-Level - Defines the displacement shift in the Texture value range. For example, if a Zbrush[®] export's **0-**Displacement is 0.5, set the Mid-Level to 0.5.

256 x 256 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096

Level Of Detail - Controls the Displacement map resolution.

Figure 2: Level Of Detail comparisons

Height - This sets the Displacement's strength and amount.

¹The representation of the surface or volume properties of an object.

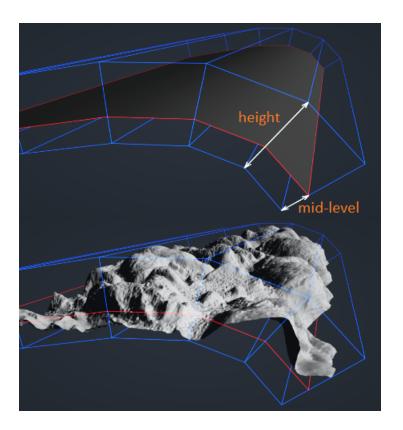


Figure 3: Height level illustration

Displacement Direction - Choose the Displacement vectors to use.

Filter Type - Determines the filter type to use on the displaced Texture map.

Filter Radius - Specifies the number of nearest pixels to use for the filtering. Higher values produce smoother displacement. This parameter is only valid if you select a **Filter Type**.

Image Tiles

The **Image Tiles** texture sets up a UV tile grid similar to UDIM image tile formats. These tile formats are generated in modeling and texturing applications.

Map #5 (Image tiles) Image Tiles Image Tile	Na	avigator				x
Image Tiles Image Tiles Image Tiles Image Tiles Image Tiles Image Tiles Standard Texture Image Tiles Image Tiles Image Tiles						
Image Tiles Image Tiles Image Tiles Image Tiles Ditmage Tiles Dit	Ма	ap #5(Image tiles)			x
Tiles source Standard Texture Tiles source Standard Texture Standard Texture mtt_ (MultiTile) Load as color type Keep source format prover I <iiii< td=""> transform projection projection Default Power I.0<iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii< th=""><th></th><th>nage Tiles</th><th></th><th></th><th></th><th></th></iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii<></iiii<>		nage Tiles				
Image Tiles Tile 1 Tile 1 Dismap power transform projection Default Channel Format Automatic Layer options Default Power 1.0 Value Gamma 2.2 UV transform Map #6 (2D transformation) Projection	•	Parameters				
MultiTile Image Tiles bitmap power 2D transform projection Default Image Tiles Channel Format Automatic Layer options Default Power 1.0 Value Invert Invert UV transform Map #6 (2D transformation) Projection No Map	TI	ïles source	Standard T	exture		.
Tie1 Image tiles gridSize 1 1 + power transform projection Channel Format Automatic • Layer options Default • • • • Gamma 2.2 • • • • • UV transform Map #6 (2D transformation) • • • • Projection • • • • • • •<	St	itandard Texture	mtt_ (MultiTile)			
bitmap power transform projection Gamma 2.2 Invert UV transform Map #6 (2D transformation) Projection		oad as color type	Keep source format			•
Map #6 2D transform projection Layer options Default Image: Chainer Formation Power 1.0 + Value Image: Chainer Formation Image: Chainer Formation Gamma 2.2 + Image: Chainer Formation Image: Chainer Formation Image: Chainer Formation UV transform Map #6 (2D transformation) Projection No Map	ige tiles gr	ridSize				
Layer options Default Power 1.0 + Value Gamma 2.2 + Invert UV transform Map #6 (2D transformation) Projection No Map	CI	Channel Format	Automatic			
Gamma 2.2 \$ Invert UV transform Map #6 (2D transformation) Projection No Map	La La	ayer options	Default			•
Invert UV transform Map #6 (2D transformation) Projection No Map	 Pc	ower	1.0		Value	•
UV transform Map #6 (2D transformation) Projection No Map	G	amma	2.2			
Projection No Map	In	nvert				
	U	IV transform	Мај	p #6 (2D transformat		
Empty tile color	Pr	rojection		No Map		
	Er	mpty tile color				

Figure 1: Creating an Image Tile node creates a Node network consisting of a MultiTile and 2D Transform node

Image Tile Parameters

Tiles Source - Reads the tile **Images** from the **MultiTile** or grid. This parameter synchronizes with the **Global Settings**.

Standard Texture - Selects the standard Texture to use as the tile source and to display in the **Viewport**.

Load As Color Type - Controls the color format to load the **Textures**¹.

Grid Size - Determines the Image tile grid's size. This parameter is active if Tile Source is set to Tile Grid.

Channel Format - Indicates the preferred channel format for loading images. Floating point options are ignored for 8-bit images. This parameter is disabled if **Tile Source** is set to **Tile Grid**.

Layer Options - Selects specific layers if the Image has multiple layers.

Power - Controls the Image's brightness. Lower values make the Image darker on the surface.

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Gamma¹ - Controls the input Image's luminance, and can tune or color-correct the image if needed.

Invert - Inverts the Image's color values.

UV Transform - Accepts any **Transformation** node to control the surface texture's position, rotation, and scale.

Projection - This input accepts an OctaneRender[®] **Projection** node. If nothing is connected to this input, the Image texture uses the surface's **UV** texture coordinates by default.

Empty Tile Color - This color's use depends on the primary usage of the Texture map. For instance, set this parameter to white if the Texture map is used for **Opacity**.

Toon Ramp

The **Toon** ramp node controls the amount of detail in toon shading. It provides the mapping positions for a range of colors to the **Toon** material. The representation of the surface or **Volume** properties of an Object's **Diffuse**² or **Specular**³ channels and the resulting color range is based on the hue set by that channel, respectively. You can add more positions to increase the number of colors in the range. The Toon ramp is applied to a Toon material's **Toon Diffuse** ramp or **Toon Specular** ramp.

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

²Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

³Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

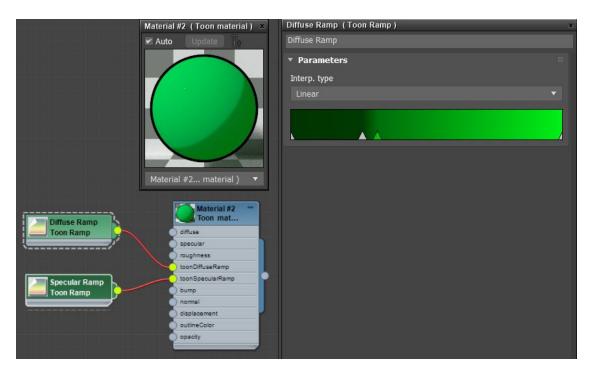


Figure 1: The Toon ramp applied to the Toon Diffuse and Toon Specular Ramp inputs

Transform Value

Transform Value sets the other **Textures**¹' orientation. It connects to the **Transform** input pin on any given **Texture** map and provides true 3D positioning for Texture maps, unlike the **2D Transformation** node, which provides planar positioning for Texture maps.

	Map #9 (Transform value) ×						
Transform Va Transform va	Transform Value						
	▼ Parameters						
	rotationOrder	YXZ					
	rotation	0.0		0.0		0.0	¢
	scale	1.0		1.0		1.0	¢
	translation	0.0	¢	0.0	¢	0.0	¢

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

Figure 1: Transform Value parameters

Mediums

Octane supports participating media inside objects (absorption, subsurface scattering, and volume). These settings are stored in **Medium** nodes, which are attached to the corresponding input pins of **Diffuse**¹, **Specular**², **Universal**, or **Null** material nodes.

There are five types of Medium nodes:

- **Scattering³** Has parameters for absorption, scattering light passing through the Medium, and emission inside the Medium.
- Random Walk A newer variant of subsurface scattering that ensures a more realistic result.
- **Absorption**⁴ Is a simple version with **Absorption** parameters.
- **Standard Volume Medium⁵** A comprehensive node with the flexibility to specify what **VDB**⁶ grid data can be used for the various node channels. This node is covered further under the **Effects** section of this manual.
- Volume Medium & Ramp Volume mediums are used on volumetric surfaces such as smoke and clouds, and require a VDB file to create the Volume objects. Volumes are described in more detail under the Effects section of this manual.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

³Defines how fast light gets scattered when traveling through the medium.

⁴Defines how fast light is absorbed while passing through a medium.

⁵A shading system designed to render volumes such as smoke and fog.

⁶Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

To render with Medium nodes, the **Path Tracing** or **PMC** render kernels are the best choice. It is possible to render **Mediums**¹ using the **Direct Light** kernel, but only if the Medium node is connected to a **Diffuse material**², and if **Diffuse Mode** is set to **GI**.

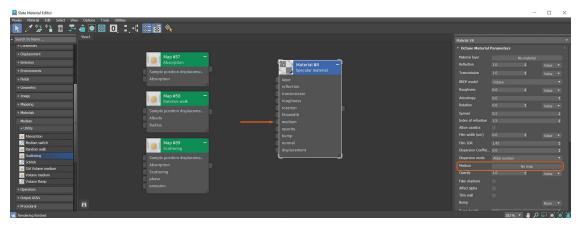


Figure 1: Medium nodes are connected using the Medium button in the Material³'s parameters

Add medium nodes to materials applied to meshes that define a closed volume. A single-sided plane will not work. For example, a plane representing a leaf will not work if you apply a material with a medium to it. The one exception is a plane representing the ground. OctaneRender[®] treats the ground plane as an endless, deep surface.

Specular and **Universal** materials are the best choice when using a Medium node (figure 2). Set the **Transmission**⁴ and **Reflection** parameters to a non-zero value, or a color other than black, or a Texture map. If the reflection is set to **1.0**, all light gets reflected regardless of the Transmission value. If reflection is set to **0.0**, all light gets transmitted through the surface. However, the result is an unnatural appearance. Reflection values of **0.1** - **0.2** are good starting points.

¹The behavior of light inside a surface volume described by scatter, absorption, and transmission characteristics.

²Used for dull, non-reflecting materials or mesh emitters.

³The representation of the surface or volume properties of an object.

⁴A surface characteristic that determines if light may pass through a surface volume.

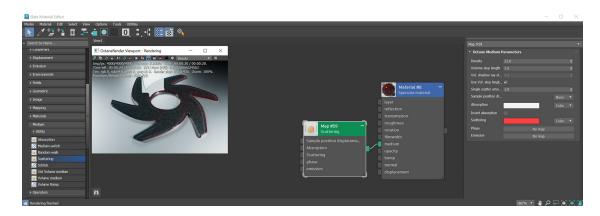


Figure 2 : A Scattering medium node is connected to a Specular material¹

In the physical world, if the **Absorption** attribute use a color, the light transmitted through the surface is shaded as the complementary color (figure 3). The **Invert Absorption** parameter can be activated in the **Absorption** and **Scattering** nodes which will make the these real-world physical characteristics behave in an opposite fashion.

Figure 3 : A diagram shows that complementary colors are opposite from each other on the color wheel

Absorption

Absorption² is controlled with the **Absorption** medium, which defines how fast light is absorbed while passing through a medium. The absorbed light will not continue through the surface and it's absorbed energy is converted to the opposed color from the color specified in the **Absorption** attribute (figure 1).

¹Used for transparent materials such as glass and water.

²Defines how fast light is absorbed while passing through a medium.

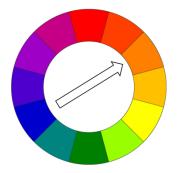
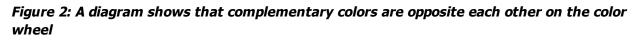




Figure 1: A red absorption color is specified resulting in the red color being converted to green

The color resulting from the absorption is dependent on the distance light travels through the material. With increased distance, it gets darker, and if the absorption is colored, it becomes more saturated. It works in a sub-tractive manner in that the scattered color is the compliment of the color designated in the parameter.

Absorption Parameters

Density - Determines the density of the particles in the surface. The larger the value, the more likely light will be absorbed when passing through the surface.

Volume Step Length - The default value is 4, but if the volume is smaller than this, you need to decrease the value. Decreasing this value decreases render speed, and increasing the value causes the ray marching algorithm to take longer steps. If this value exceeds the volume's dimensions, then the ray marching algorithm

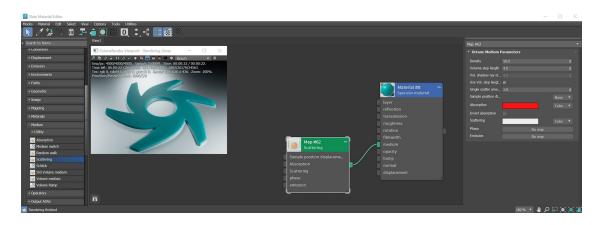
takes a single step through the whole volume. To get the most accurate results, keep this value as small as possible.

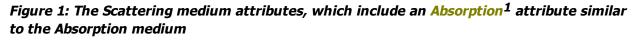
Volume Shadow Ray Step Length - Step length that is used by the shadow ray for marching through volumes.

Use Shadow Ray Step Length - Check box for using the Volume Step Length for the Volume Shadow Ray Step Length as well.

Sample Position Displacement¹ - Allows a texture to control a volume's sample positions displacement.

Absorption - By default, the absorption attribute is controlled by a value slide ranging from 0 - 1 where 0 is no absorption and 1 is full absorption. A color or texture can be added to replace the value slider. The color's value and saturation can be used to further determine the absorption amount. Note: If the Invert Absorption attribute is active, these values will be behave in the opposite fashion, for example: 0 will be full absorption and 1 will be no absorption.


Invert Absorption - Inverts the absorption characteristics so that the absorption color specified is the same color seen in the surface. For example: Red results in red, otherwise, red would result in green (if this check box is inactive).


Scattering

The **Scattering²** medium node is used to create the look of subsurface scattering. This is the phenomena where light rays enter a surface, are scattered within the material of surface, and then exit again. It is the key to creating the look of realistic human skin and other organic surfaces. In the figure 1, the absorption color is being strongly scattered with a scattering color of white to give the look of a waxy or skin-like surface.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

²Defines how fast light gets scattered when traveling through the medium.

Scattering Parameters

Density - Determines the density of the particles in the surface. The larger the scale value, the more likely light will be absorbed when passing through the surface.

Volume Step Length - Depending on the surface, you may need to adjust this parameter. The default value is **4**, but if the volume is smaller than this, you need to decrease the value. Decreasing this value decreases render speed, and increasing the value causes the ray marching algorithm to take longer steps. If Volume Step Length exceeds the volume's dimensions, then the ray marching algorithm takes a single step through the whole volume. To get the most accurate results, keep Volume Step Length as small as possible.

Volume Shadow Ray Step Length - The step length that is used by the shadow ray for marching through volumes.

Use Volume Step Length for Volume Shadow Ray Step Length - If active, uses Volume Step Length as Volume Shadow Ray Step as well.

Single Scatter Amount - Determines how often direct light is calculated in volumes, as a ratio of scatter events.

Sample Position Displacement² - Allows a texture to control a volume's sample position displacement.

Absorption - By default, the absorption attribute is controlled by a value slide ranging from 0 - 1 where 0 is no absorption and 1 is full absorption. A color or texture can be added to replace the value slider. The color's value

¹Defines how fast light is absorbed while passing through a medium.

²The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

and saturation can be used to further determine the absorption amount. Note: If the Invert Absorption attribute is active, these values will be behave in the opposite fashion, for example: 0 will be full absorption and 1 will be no absorption.

Invert Absorption - Inverts the absorption characteristics so that the absorption color specified is the same color seen in the surface. For example: Red results in red, otherwise, red would result in green (if this check box is inactive).

Scattering - Determines how fast light scatters as it moves through a surface. High values mean that light scatters sooner as it enters a surface, and low values mean that light passes deeper into the surface before scattering. A **0** value disables Scattering.

Phase - Controls light direction as it scatters through the surface. A value of **0** results in light scattering equally in all directions; a positive value results in forward scattering, where photons continue the same approximate direction as when they enter the surface; and a negative value results in backwards scattering, where light moves through the surface in the same direction, but opposite to the angle that they entered the surface. This is known as backscattering.

Emission - Attaches an **Emission** node to the **Emission** input pin. When you connect an Emission node to a Medium node, it defines emission inside the volume instead of on the object's surface. In this case, **Power** controls how fast a ray's radiance increases while traveling through the volume; it doesn't represent total power. It's not multiplied with the **Scale** parameter. This effect works best with large, not-too-bright objects - small, bright objects create lots of noise.

Volume Medium

In order to use the **Volume Medium¹** node, an **Octane Volume** must be added to the scene first. This option can be found in the Octane section of the Command panel (figure 1).

¹A shading system designed to render volumes such as smoke and fog.

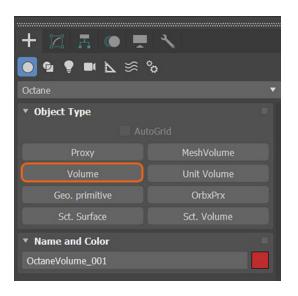
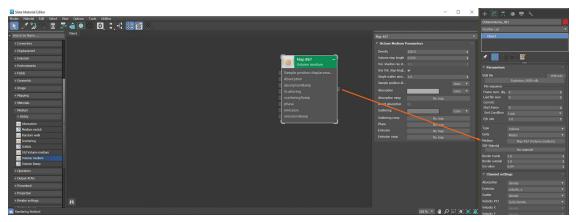



Figure 1: Adding an Octane VDB¹ node to a scene

The **Volume Medium** can be added to the imported VDB file under the **Medium** slot in the **Modify** window (figure 2).

¹Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

Figure 2: Adding the Volume Medium node to an Octane Volume object

After adjusting the **Density**, **Absorption**¹, and **Scattering**² parameters, figure 3 shows an example of the **Volume Medium** node applied to an imported VDB file.

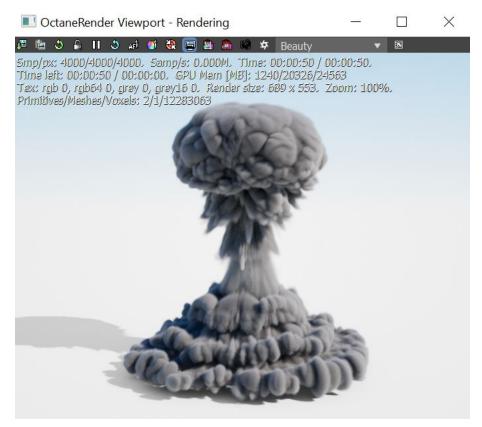


Figure 3: A Volume Medium node connected to an imported VDB file

Volume Medium Parameters

Density - Determines the density of the particles in the volume. Other attributes such as absorption, scattering, and emission will be amplified as this value is increased.

Volume Step Length - This parameter determines the average distance between points where OctaneRender[®] samples the Absorption, Scattering, and Emission textures. The default value is **4.0**. If your

²Defines how fast light gets scattered when traveling through the medium.

¹Defines how fast light is absorbed while passing through a medium.

Volume is smaller than this, decrease the Step Length. Decreasing this value reduces the render speed. Increasing this value causes the ray marching algorithm to take longer steps. You get the most accurate results when the Step Length is as small as possible. For simplifying your workflow, set the Volume Step Length to an acceptable value.

Vol. Shadow Step Length - Similar to Volume Step Length but defined for Shadows.

Use Volume Step Length for Volume Shadow Ray Step Length - Check box for using the Volume Step Length for the Volume Shadow Ray Step Length as well.

Sample Position Displacement¹ - Allows a texture to control a volume's sample position displacement.

Absorption - By default, the absorption attribute is controlled by a value slide ranging from 0 - 1 where 0 (black) is no absorption and 1 (white) is full absorption. A color or texture can be added to replace the value slider. The color's value and saturation can be used to further determine the absorption amount. Note: If the Invert Absorption attribute is active, these values will be behave in the opposite fashion, for example: 0 (black) will be full absorption and 1 (white) will be no absorption.

Absorption Ramp - A **Volume Gradient** ramp can be added here to define the color and density range for the volume. In the gradient, the colors near the left are mapped to the less dense areas of the volume and the colors near the right of the ramp are mapped to the more dense areas of the volume. These gradient values are multiplied by the **Absorption** value.

Invert Absorption - Inverts the absorption characteristics so that the absorption color specified is the same color seen in the volume. For example: Red results in red, otherwise, red would result in green (if this check box is inactive).

Scattering - Determines how quickly light scatters as it moves through the surface. High values mean that light scatters sooner as it enters the surface, and low values mean that light passes deeper into the surface before it scatters. By default, the scattering attribute is controlled by a value slide ranging from 0 - 1 where 0 is no scattering and 1 is full scattering. A color or texture can be added to replace the value slider. The color's value and saturation can be used to further determine the scatter amount.

Scattering Ramp - A **Volume Gradient** ramp can be added here to define the color and intensity range for the volume's scattering effect. In the gradient, the colors near 0 the left are mapped to the less dense areas of the volume and the colors near the right of the ramp are mapped to the more dense areas of the volume. These gradient values are multiplied by the **Scattering** value.

Phase - Controls the direction of the light as it scatters in the volume. A value of 0 results in an even light scattering in all directions. Positive values result in forward scattering, where the photons continue traveling in the same general direction when they enter the surface. Negative values result in backwards scattering, where the light moves through the surface in the opposite direction of the angle that they entered the volume.

Emission - Controls the volume's light emission using either a Blackbody or Texture emission map.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

Emission Ramp - This attribute uses an Octane **Volume Gradient** to alter the color of the volume emission. It works best with a **Texture Emission** node connected to the **Emission** attribute.

Volume Ramp

The **Volume Ramp** map provides precise control for a **Volume** geometry's color, such as absorption, scattering, and emission. This map works with the **Volume** medium map discussed in the **Volume Medium**¹ topic in this manual.

Map #68		•			
Octane Volume Ramp Parameters					
Interpolation	Linear	•			
Interpolation color	Physical	•			
Selected: #0. (Count	: 2)				
Color					
Position					

Figure 1: Volume Ramp parameters

Schlick

The **Schlick** map connects to a **Scattering²** map's **Phase** input. It has a single parameter, **Scattering Direction**. Negative values result in more backscattering, and positive values result in more forward scattering.

 $^{{}^{1}\!\}mathsf{A}$ shading system designed to render volumes such as smoke and fog.

²Defines how fast light gets scattered when traveling through the medium.

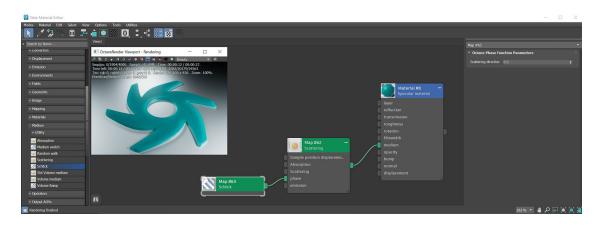


Figure 1: A Schlick map connected to a Scattering map

Random Walk

The **Random Walk** node is a newer variant of subsurface scattering that utilizes a stochastic or random process for the scattering of light through an object. This provides the most realistic result when rendering scatter volumes and is capable of maintaining more skin surface detail when used as a subsurface scattering method for skin compared to the traditional **Scattering¹** medium node. The **Random Walk** parameters are similar to the **Scattering** node's parameters with a few exceptions (figure 1).

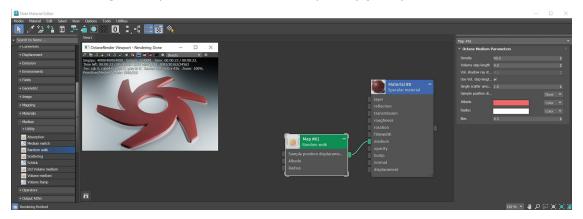


Figure 1: The Random Walk Medium used to create a waxy or skin-like surface

¹Defines how fast light gets scattered when traveling through the medium.

Random Walk Parameters

Density - This parameter multiplies against **Scattering**.

Volume Step Length - Depending on the surface, you may need to adjust this parameter. The default value is **4**, but if the volume is smaller than this, you need to decrease the value. Decreasing this value decreases render speed, and increasing the value causes the ray marching algorithm to take longer steps. If Volume Step Length exceeds the volume's dimensions, then the ray marching algorithm takes a single step through the whole volume. To get the most accurate results, keep Volume Step Length as small as possible.

Volume Shadow Ray Step Length - The step length that is used by the shadow ray for marching through volumes.

Use Volume Step Length for Volume Shadow Ray Step Length - If active, uses Volume Step Length as Volume Shadow Ray Step as well.

Single Scatter Amount - Determines how often direct light is calculated in volumes, as a ratio of scatter events.

Sample Position Displacement¹ - Allows a texture to control a volume's sample position displacement.

Albedo - The scattering albedo where the coefficients are determined for this parameter using the mean free path.

Radius - Determines the depth that the light scatters in the medium where black provides no scattering and white fully scatters. A color node or a float value can be used with this attribute as well. A color node's Value amount plays an important roll with this attribute. A darker value will scatter this color less and a lighter value will scatter this color more.

Bias - The bias of the subsurface scattering. Higher values use biased sampling, which usually yields better results with lower depth settings.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

Lights And Cameras

This section will cover adding Octane lights and cameras into your scene.

Lighting

- "Daylight" on page 219
- "Octane Light" on page 221
- "Octane IES Light" on page 225
- Analytic Light
- Directional Light
- "Planetary Environment" on page 228
- "Toon Directional" on page 231
- "Toon Point" on page 232
- "Volume Spotlight" on page 234
- "Mesh Emitters" on page 235

Cameras

- "Camera Settings" on page 237
- "OSL Baking" on page 241
- "OSL Camera" on page 243
- "Baking" on page 244
- "Panoramic" on page 245
- "Universal Camera" on page 247
- "Camera Imager Settings" on page 251
- "Camera Motion Blur Settings" on page 257
- "Camera Post Processing Settings" on page 260
- "Camera Tool Settings" on page 264

Lighting

There are nine light types in the OctaneRender[®] for 3DS Max[®] plugin, which you can find in the **Create** Panel's **Lighting** category (Figure 1). You can also create lights by using mesh objects in the scene, and then adding indirect/environment lighting from the 3DS Max[®] **Environment And Effects** window (Figure 2).

Figure 1: Accessing Lights from the Command Panel

3. Environment and Effects	22 -0 4		\times	
Environment Effects				
Common Parameters Background:				
Color: Environment Map:	None	Use Map		
Global Lighting: Tint: Level: 1.0 \$		Ambient:		
► Exposure Control				
► Atmosphere				

Figure 2: Accessing Environment lighting from the Environment And Effects window

Daylight

The OctaneRender[®] **Daylight** system simulates a complete environment with an infinite **Direct** light (like the sun) and a **Sky**. To add the daylight system to the scene, click the **Daylight** button in the **Octane Lights** category, then click-and-drag in an **Orthographic Viewport**. The light's origin is where you first click the mouse.

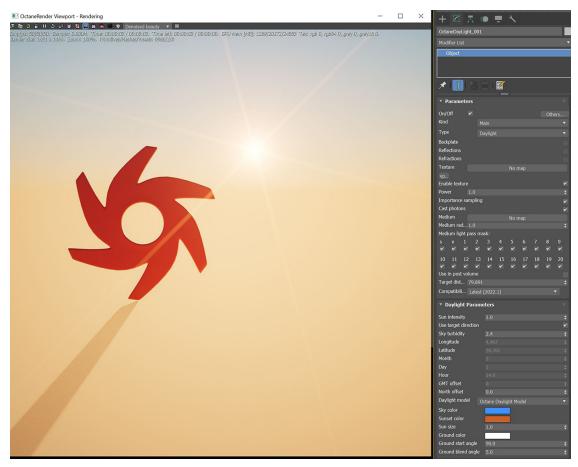


Figure 1: Daylight system

Octane Daylight Parameters

On / Off - Toggles the Environment for this light type on and off.

Kind - Determines if the light source contributes to just the Environment (**Visible**), or if it provides a directional light source in addition to an Environment (**Main**).

Type - There are two options for this parameter:

- **Daylight** Used with the **Kind** parameter's **Main** option. It provides an Environment that consists of a Sky and **Ground** texture.
- Texture Used with the Kind parameter's Visible option. It provides a consistent lit Environment and works best with a Texture environment (HDRI¹).

The following three options are available when the Kind parameter is set to **Visible**.

- Backplate Makes the Visible environment behave as a background plate.
- **Reflections** Makes the Visible environment visible in **Material**² reflections.
- **Refractions** Makes the Visible environment visible in the Material refractions.

Texture - Specify Environment maps as either a **Lighting** environment or a **Background** environment. Apart from having an HDR image to light the Environment, you can also specify a different Environment for the background that does not contribute to the scene's illumination, but is visible in reflections.

Enable Texture - Enables the Sky texture.

Power - Adjusts the overall light's strength. This can affect the Image's overall contrast and exposure level.

Importance Sampling - This toggles the **Sky** texture's Importance Sampling, similar to the Importance Sampling in the **Texture** environment. This enables quicker noise reduction for HRDI images. The ray tracing is more efficient because it doesn't waste time on rays that do not contribute much to the overall image quality. Due to the added complexity, this reduces the Ms/sec of rendering, but each Ms is more effective, resulting in higher image quality in less time. Importance Sampling is enabled by default.

Cast Photons - If photon mapping is used, this will cast photons from bright areas in the environment map.

Medium - Creates an **Environment** medium. If specified, OctaneRender[®] applies the Medium to a virtual sphere around the camera.

Medium Radius - If you specify a Medium (either **Absorption³** or **Scattering⁴**), this controls the radius of the virtual sphere created around the camera when you apply the Medium.

Use in Post Volume - Enables or disables the light in post volume rendering.

Target Distance - Determines the distance the target is from the light source.

²The representation of the surface or volume properties of an object.

³Defines how fast light is absorbed while passing through a medium.

⁴Defines how fast light gets scattered when traveling through the medium.

¹An image which presents more than 8 bit per color channel unlike most common image formats.

Compatibility Mode - The Octane version that the behavior of this node should match. The default is Latest (2022.1). The 2021.1 compatibility mode produces absolute spectral colors, not relative to the white light spectrum set in the kernel.

Sun Intensity - Scale factor that adjust only the sun's strength.

Use Target Direction - Controls the sun's direction through the placement of the light object in the scene. When activated, the **Longitude**, **Latitude**, **Month**, **Day**, and **Hour** options are disabled.

Sky Turbidity - Adjusts the sunlight shadows' sharpness. Low values create sharp shadows like on a sunny day, and high values diffuse the shadows like on a cloudy day.

Longitude / Latitude - Makes realistic sun settings for a specified geographic location.

Month/Day/GMT Offset/Local Time - Places the sun in the sky according to the date and time for the sun at the current longitude and latitude.

North Offset - Adjusts the scene's North direction. This is useful for architecture visualization to ensure the sun's direction is accurate to the scene.

Model - Specifies the Daylight model to use for the current Environment.

- **Octane** This is the new default daylight model simulates full-spectrum daylight, providing more sky color variation as the sun moves along and bearing shorter rays as the sun moves closer to the normal plane.
- **Preetham** This is the old daylight model that lights a scene with basic spectral radiance as the sun moves over the horizon at a relative distance from the object.
- **Nishita** Implements atmospheric scattering based on the Nishita sky model, and it displays the color variations that are optical effects caused by the particles in the atmosphere.
- Hosek Wilkie Produces more realistic and detailed results than other implementations specially in hazy conditions and near the horizon.

Sky Color/Sunset Color - The new Daylight model uses these settings to customize the light's spectral shade and affects the scene's overall mood.

Sun Size - Controls the sun's radius in the Daylight environment.

Ground Color - Determines the ground's base color. Ground Color works with the New and Nishita sky models.

Gnd Start - The angle below the horizon where the transition to the Ground Color starts. This only works with the New sky model.

Gnd Blend - The angle over which the sky color transitions to the ground color. This only works with the New sky model.

Octane Light

The **Octane Light** provides a light source **Object** to use for fast lighting setups without adding new **Geometry** and **Materials**¹. This Object produces Geometry and Materials for rendering, and makes light setup much easier.

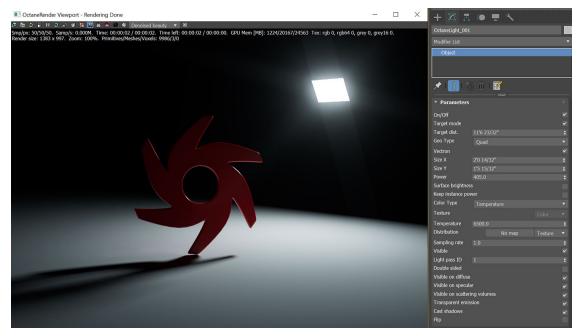


Figure 1: The Octane Light source

Octane Light Parameters

On / Off - Toggles this light type on and off.

Target mode - Adds a target item to help orient your light direction.

Target dist. - Set the target a specific distance from the light source.

Geo Type - Select from a Plane, Disk, or Sphere light shapes.

Vectron - Use procedural geometry for the light source.

Size X and Y - Determines the size of the Octane Light source. A larger area produces a softer result.

Power - The Light source's wattage. Set each light in the scene to its real-world wattage. For example, set a desk lamp's Power to **25**. Don't use this setting to balance the scene's lighting power. Power gives the total power that the light source is emitting. The default value is 100 watts.

¹A set of attributes or parameters that describe surface characteristics.

Surface Brightness - The Light source's size contributes to its overall brightness.

Keep Instance Power - If this is enabled and Surface Brightness is disabled, the Power remains constant if uniform scaling is applied to the instance.

Color Type - The Light emission may be based on a color hue or a temperature, from warmer values around **500** to cooler values upwards of **12000**.

Texture - Define color values of the light source. This parameter is valid when the **Color Type** is set to **Color**.

Temperature - The Light emission's temperature (in Kelvin). This parameter is valid when the **Color Type** is set to **Temperature**.

Distribution - This option is used to define the Pattern of the light. It's also called "Gobo Lights" or "**IES**¹ Lights". These features will be create with the help of this option. You can also create various light patterns using an Alpha image.

Sampling rate - Choose what light sources receive more samples. The maximum sampling rate is **10000**. You can set the sampling rate to **0**, which means the direct light calculation excludes the emitter.

Visible - When this is disabled, the light source is invisible to the camera, reflections, and refractions, but it still illuminates the scene.

Light Pass ID - Light Pass ID numbers **1** - **8** capture the Octane Light emitter's contribution. Octane Light emitters (just like the **Texture** emitter and **Black Body²**) have a **Light Pass ID** that assigns the Emitter to a Light Pass. You can assign multiple Emitters to the same Light Pass. If nothing is configured, all emitters contribute to Light Pass ID **1** by default.

Double Sided - The Emitter emits light from the front and back sides.

¹An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

²An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

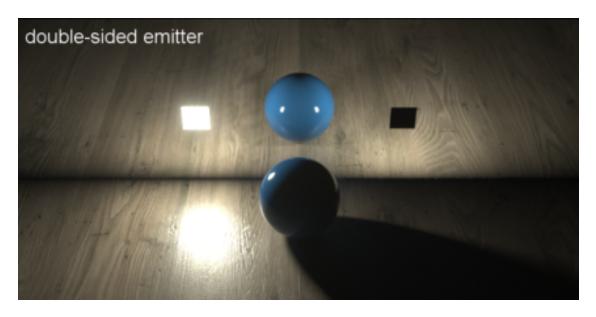


Figure 3: The Double Sided parameter when enabled and disabled

Visible On Diffuse¹ - Makes the light source visible on diffuse surfaces. This is enabled by default. You can enable or disable the Black Body or Texture emission's light sources from casting illumination or shadows on Diffuse objects. Disabling this option disables emission - it's not visible in diffuse reflections, but it is visible in specular reflections. It's also excluded from the Direct Light calculation.

Figure 4: The Visible On Diffuse parameter when enabled and disabled

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Visible On Specular¹ - Makes the light source visible on specular surfaces, and it lets you hide Emitters just on specular reflections and refractions. This is enabled by default.

Figure 5: The Visible On Specular parameter when enabled and disabled

Visible on Scattering² Volumes - Makes the light source visible on scattering volumes.

Transparent Emission - The light source will cast illumination on diffuse objects even if the emitter is transparent.

Cast Shadows - Enables the light source to cast light and shadows on Diffuse surfaces, and lets you disable Direct Light shadows for Mesh emitters. This option takes effect if the emitter is included in the Direct Light calculation, such as if the Sampling Rate value is greater than **0**. This option is enabled by default.

Flip - Reverses the light source's direction.

Octane IES Light

The **Octane IES³** light source is similar to **Octane Light**, but it can accept IES light profiles. The IES light does not have light shape options - the only shape is spherical.

¹Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

²Defines how fast light gets scattered when traveling through the medium.

³An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

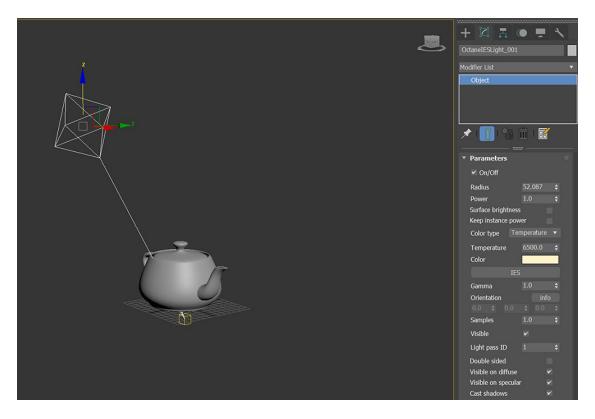


Figure 1: Octane IES light parameters

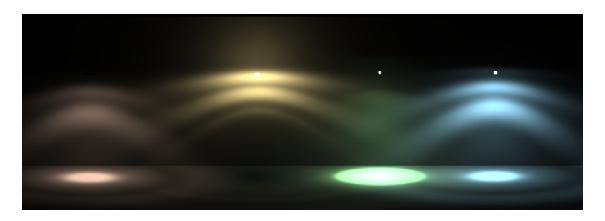


Figure 2: Octane IES light

Octane IES Light Parameters

On / Off - Toggles this light type on and off.

Radius - Sets the sphere's radius.

Power - Represents the total power the light source emits in wattage. You should set each light in the scene to its real-world wattage. For example, to simulate a desk lamp, set this parameter to **25**. By default, this value is **1**, or 100 watts.

Surface Brightness - The light source's size contributes to its overall brightness.

Keep Instance Power - If this is enabled and Surface Brightness is disabled, Power remains constant if you apply uniform scaling to the instance.

Color Type - The light emission is based on a color hue or a temperature, from warmer values of **500** to cooler values of **12000**.

Temperature - The light emission's temperature (in Kelvin).

Color - This defines the color of the light, when Color Type is set to Color.

IES File - Allows for an IES light profile to be loaded.

Color Space - Determines the color space.

Legacy Gamma¹ - Controls the IES file's gamma but only when the Color Space is set to Linear sRGB + Legacy Gamma.

Orientation - When you load an IES file, this attribute adjusts the light's orientation or direction.

Sampling Rate - Choose what light sources receive more samples. Adjusting the Emission's light source sampling rates in the scene leads to a better balance between light sources. You can set the sampling rate to **0**, which means the **Direct Light** calculation excludes the Emitter.

Visible - When this is disabled, the light source is invisible to the camera but still visible in reflections and refractions.

Light Pass ID - Light Pass ID numbers **1** - **8** capture the contribution from the IES Light source emitter. IES Light emitters (just like the **Texture** emitter and **Black Body²**) have a **Light Pass ID** pin to assign the Emitter to a light pass. It is possible to assign multiple Emitters to the same light pass. If nothing is configured, all Emitters contribute to Light Pass ID **1** by default.

Double Sided - Makes the Emitter emit light from the front and back sides.

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

²An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

Visible On Diffuse¹ - Makes the light source visible on diffuse surfaces. This is enabled by default. You can enable or disable the Black Body or Texture emission's light sources from casting illumination or shadows on Diffuse objects. Disabling this option disables the Emission - it's not visible in diffuse reflections, but it is visible in specular reflections. It's also excluded from the Direct Light calculation.

Visible On Specular² - Makes the light source visible on Specular surfaces and hides Emitters just on specular reflections and refractions. This is enabled by default.

Cast Shadows - Enables the light source to cast light and shadows on diffuse surfaces, and lets you disable Direct Light shadows for Mesh emitters. This option takes effect if the Emitter is included in the Direct Light calculation, like when the Sampling Rate value is greater than **0**. This option is enabled by default.

Planetary Environment

The **Planetary** environment type is a flexible Nishita sky model. It is most useful when rendering scenes as they are seen from outer space. For its effects to be visible, the camera has to have a very high **Altitude** value as it moves to outer space to view the expansive horizon of the planetary body. It takes into account the conditions within and beyond the atmosphere of a planetary body (like Earth) and its surroundings in space. Instead of a single ground color and a sky/sunset color, there is a planetary surface that reflects and emits light. This **Node** extends the Environment's **Medium** (volume rendering and subsurface scattering) with an atmospheric scattering through the planetary body's atmosphere. Here, the atmosphere is perceived as a layer of gas surrounding a planetary mass, and it is held in place because of gravity so as the light travels into atmosphere's density is sampled along the ray at regular intervals, resulting in an amount of scattering based on the atmosphere's density.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

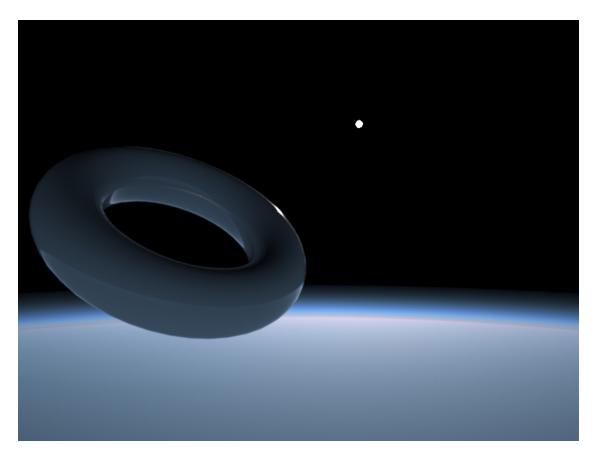


Figure 1: A scene rendered using the Planetary environment, where the camera is set at a very high altitude

Planetary Environment Parameters

Visible Environment

- **On / Off** Toggles this light type on and off.
- **Kind** The main option is the default option, and it renders everything in the environment. The **Visible** option activates the **Backplate**, **Reflections**, and **Refractions** parameters. You can use this option to separate foreground and background elements for compositing.
- **Backplate** Generates a cutout rendering where foreground elements are positioned in the scene.
- **Reflections** Generates the Planetary environment in scene object reflections.
- Refractions Generates the Planetary environment in scene object refractions.

Sun Direction

- Use Dummy Direction When active, the Planetary environment uses the dummy Sun object in the Viewport to determine the sun's direction.
- Longitude/Latitude These options become available when you disable Use Dummy Direction. These work with the geo-based longitude and latitude values to determine the sun's direction.
- Month/Day/Hour/GMT Offset These options become available when you disable Use Dummy Direction. These work with the Longitude/Latitude settings to determine the sun's direction.

Sun

- **Turbidity** Adjusts the sharpness of the sun light's shadows. Low values create sharp shadows like on a sunny day, and high values diffus the shadows like on a cloudy day.
- **Power** Adjusts the light's strength. This affects the image's overall contrast and exposure levels.
- **Sun Intensity** Scale factor that adjust only the sun's strength.
- North Offset Adjusts the scene's actual North direction. This is useful for architecture visualization to ensure the sun's direction to the scene is accurate.
- Sun Size Controls the size of the sun disk that's visible in the scene.
- Altitude The camera's altitude. Set this to a very high value in order to view the expansive horizon of the planetary body.
- Star Field Conveys star fields behind the planet.
- **Importance Sampling** This toggles the importance sampling of the **Sky** texture, similar to the importance sampling in the **Texture** environment.
- Medium This parameter accepts an Absorption¹, Scattering², or Volume medium node to create volume or fog effects across the scene. More information can be found in the Volume Mediums³ topic of the Effects category in this manual.
- Medium Radius Adjusts the Medium's scale.
- Longitude / Latitude Coordinates where we are currently positioned.

Planetary Surface

- **Ground Albedo** The planet's Surface texture map.
- **Ground Reflection** The planet's **Specular**⁴ texture map.
- Ground Glossiness The planetary glossiness.

¹Defines how fast light is absorbed while passing through a medium.

²Defines how fast light gets scattered when traveling through the medium.

³The behavior of light inside a surface volume described by scatter, absorption, and transmission characteristics.

⁴Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

- **Ground Emission** The planet's Surface texture map at nighttime.
- Ground Normal Map The planet's Normal map.
- Ground Elevation The planet's Elevation map.

Toon Directional

The **Toon Directional** light works with **Toon** materials - it was developed only for this **Material¹** type. This adds a **Directional** light to the scene, much like the native Direct Light in 3DS Max[®], and is suitable for global lighting. Rotation is important, and position does not have any effect on the illumination. The **Size** and **Power** parameters have no effect on the light source due to the stylistic nature of toon shading. The **Efficiency** parameter controls the light source's brightness when the **Color Type** is set to **Value**. If the Color Type is set to a **Color** or **Texture**, the Efficiency parameter has no effect.

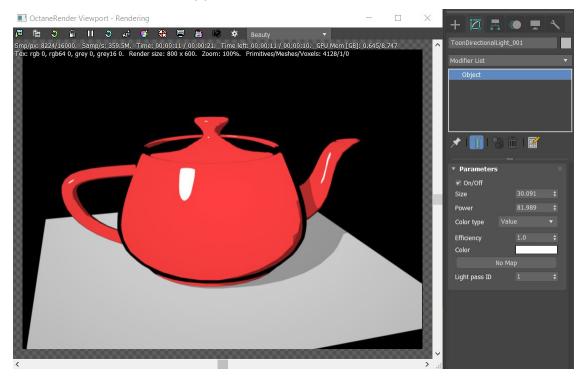


Figure 1: The Toon Directional light

¹The representation of the surface or volume properties of an object.

Toon Directional Parameters

On / Off - Toggles this light type on and off.

Size - Defines the light object size.

Power - Strength of the light source.

Color Type - Defines how to color the light source.

Efficiency - When **Color Type** is set to **Value**, this defines a gray scale value for the light source betwen 0 and 1.

Color - When Color Type is set to Color, this defines a color value for the light source.

Texture - When **Color Type** is set to **Texture**, this defines a texture value for the light source. Initially set to **No Map**.

Light Pass ID - Light Pass ID numbers **1** - **8** capture the Octane Light emitter's contribution. Octane Light emitters (just like the **Texture** emitter and **Black Body**) have a **Light Pass ID** that assigns the Emitter to a Light Pass. You can assign multiple Emitters to the same Light Pass. If nothing is configured, all emitters contribute to Light Pass ID **1** by default.

Toon Point

The **Toon Point** light works with **Toon** materials, as it was developed only for this **Material¹** type. This adds a point light to the scene, much like the native point light in 3DS Max[®]. Position is important, but rotation has no effect as this light source type illuminates in all directions. The **Size** and **Power** parameters have no effect on the light source due to the stylistic nature of toon shading. The **Efficiency** parameter controls the light source's overall brightness when the **Color Type** is set to **Value**. If the Color Type is set to a color or texture, the Efficiency parameter has no effect.

¹The representation of the surface or volume properties of an object.

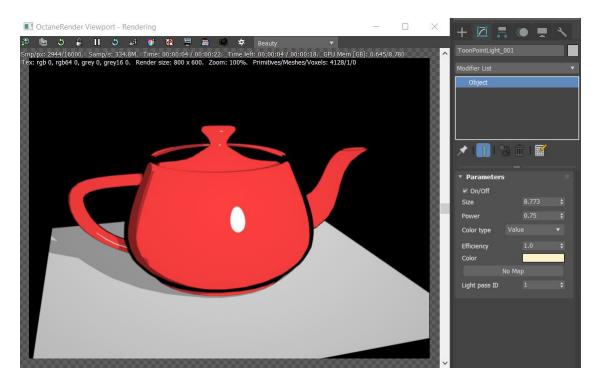


Figure 1: The Toon Point light

Toon Point Parameters

On / Off - Toggles this light type on and off.

Size - Defines the light object size.

Power - Strength of the light source.

Color Type - Defines how to color the light source.

Efficiency - When **Color Type** is set to **Value**, this defines a gray scale value for the light source betwen 0 and 1.

Color - When Color Type is set to Color, this defines a color value for the light source.

Texture - When **Color Type** is set to **Texture**, this defines a texture value for the light source. Initially set to **No Map**.

Light Pass ID - Light Pass ID numbers **1** - **8** capture the Octane Light emitter's contribution. Octane Light emitters (just like the **Texture** emitter and **Black Body**) have a **Light Pass ID** that assigns the Emitter to a Light Pass. You can assign multiple Emitters to the same Light Pass. If nothing is configured, all emitters contribute to Light Pass ID **1** by default.

Volume Spotlight

This is a Spotlight that uses the **Spectron** procedural lighting system. Spectron is exposed as a **Procedural** light node type, which you can use for quick volumetric effects and spotlight generation (figure 1).

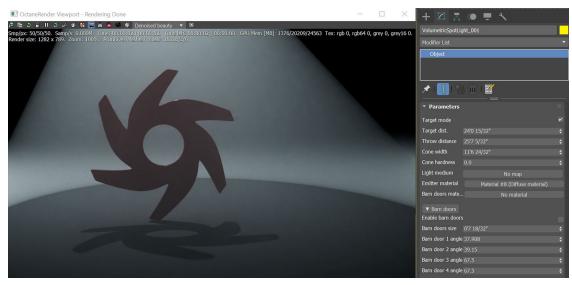


Figure 1: Volume Spotlight

Volume Spotlight Parameters

Target Mode - Creates a target to orient the spotlight.
Target dist. - Set the target a specific distance from the light source.
Throw Distance - Max distance the spotlight will affect.
Cone Width - Controls the spread of the light.
Light Medium - Lets you use a specific medium.
Emitter Material¹ - Define a material with emission properties to control the light source.
Barn Doors Material - Define a material for the barn doors.
Enable Barn Doors - Toggle the barns doors on or off.
Barn Door Angle - Controls the barn door angle to control light occlusion.

¹The representation of the surface or volume properties of an object.

Mesh Emitters

In order to use a **Mesh** as a light source, first connect a **Diffuse¹** or **Universal** material to the Mesh. Next, connect a **Black Body²** or a **Texture** emission node to the **Diffuse** or **Universal** material's **Emission** slot. The Black Body and Texture emission nodes are covered in more detail in their respective topics in this manual.

	Motorial #9	Map #127	
Map #127 Black body emissi Texture Distribution	Material #8 — Diffuse material layer diffuse transmission roughness medium opacity bump normal displacement emission	Texture0.025Power2000.0Surface brightness.Keep instance power.Double sided.Temperature6500.0NormalizeJistribution1.0Sampling rate1.0Light pass ID1Visible on specularVisible on scatterinTransparent emissCast shadows	

Figure 1: The Black Body emission node connected to a Diffuse or Universal material's Emission slot

Emission Types

Black Body Emission - Uses **Color Temperature** (in Kelvin) and **Power** to control the light's color and intensity.

Texture Emission - Any valid Texture type can set the light intensity. This creates effects such as TV screens by using a TV image texture as the source.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

Cameras

OctaneRender[®] for 3DS $Max^{®}$ provides three basic types of **Cameras**:

- OSL Baking
- OSL Camera
- Camera
- Universal Camera

Camera contains options for

- Standard
- Baking
- Panoramic Spherical, Cylindrical, and Cube

Universal Camera contains options for

- Thin Lens
- Orthographic
- Fisheye
- Equirectangular
- Cubemap

You can access these camera types from the **Create** panel's **Camera** category.

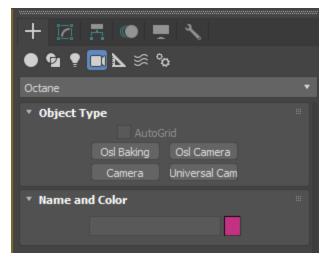


Figure 1: Accessing cameras from the Create panel

Camera Settings

You can access OctaneRender[®] **Camera** settings in the **Modify** panel when you add an OctaneRender[®] camera to the scene and make it the current selection. The Camera settings are identical for the various types of Cameras available (**Standard**, **Baking**, **Spherical**, **Cylindrical**, **Cube Map**).



Figure 1: Accessing Octane Camera settings from the Modify panel

You can also access OctaneRender's camera settings from the **Camera** tab in the **Render Setup** window when no OctaneRender[®] cameras are present in the scene. These parameters provide camera controls for the active **Viewport**.

🤰 Render Setup	: Octanel	Render			—		×
Target:	Productio	n Renderir	ng Mode				
Preset:						Render	
Renderer:	OctaneRe	nder			Save	File	
View to Render:	Quad 4 - I	Perspectiv	e			•	ô
Common Kernel	Camera	Devices	Tools	Support Acc	count F	Render Eler	nents
* Camera							
Aperture	0.0			Lens shift	X Y	0.0 0.0	
Use F-Stop	2.0			Ortho view s	hift	100.0	
F-Stop	2.8			Stereo	No S	Stereo	
Aperture edge	1.0			Mode	Off	-axis	
Focus type Aut	tofocus			Stereo dist.		0.02	
Focal depth	10.0			Left filter			
Near clip depth	0.0			Right filter			
Far clip depth	100000	\$ 000		Swap eyes			
Distortion	0.0			Apert. aspec	:t	1.0	
Pixel aspect	1.0			Persp. corre	ction		
Motion Blur							
▶ Imager							
Post Processi	ng						
* Camera Tools	;						
Copy parameters to							
Paste parameters from							

Figure 2: Octane Camera settings in the Render Setup window

OctaneRender[®] Camera Parameters

Camera Type - You can select from Standard, Baking, Spherical, Cylindrical, and Cube Map Cameras

Target mode - Adds a target item to help orient your light direction.

T. Distance. - Set the target a specific distance from the source.

FOV¹ - Controls the horizontal camera view based on angle.

FOV Y - Controls the vertical camera view based on angle, but only affects Spherical and Cylindrical camera types.

Aperture² - The camera lens opening's radius, measured in centimeters. Low values create a deep depth-of-field, where everything is in focus. High values create a shallow depth-of-field, where objects in the foreground or background are out-of-focus.

Use F-Stop And F-Stop - Controls the field-of-view and depth-of-field, similar to a real-world camera. The **F-Stop** value is the aperture-to-focal-length ratio.

Aperture Edge - Controls aperture edge detection at all points within the aperture. Lower values give more pronounced edges to out-of-focus objects affected by a shallow depth-of-field. Aperture Edge modifies the depth-of-field's boken effect. High values increase the contrast towards the edge.

Distortion - Adjusts the spherical and cylindrical distortion. The rendered image displays the entire sphere and uses equidistant cylindrical projection.

Focus Type - Select the type of focus to use for the camera. If **AutoFocus** is enabled, the focus is kept on the closest visible surface at the center of the image, regardless of the Aperture, Aperture Edge, or the Focal Depth values.

Focal Depth - The depth of the plane in focus, measured in meters.

Stereo - This specifies the output rendered in stereo.

- Left Renders the image for the left eye.
- **Right** Renders the image for the right eye.
- **Side-By-Side** Renders the scene as a pair of two-dimensional images.
- Anaglyphic Makes the render viewable with red/blue 3D glasses.
- **Over-Under** The pair of two-dimensional images is placed one above the other for special viewers.

Mode - When you choose a Stereo mode, you can choose Off-Axis or Parallel stereo camera projections.

Stereo Distance - The distance between the left and the right eye in Stereo mode, measured in meters. The stereo distance is also referred to the IPD (Inter Pupillary Distance), and is often exchanged with terms like stereo interocular distance or eye distance. For realistic depth, use values between **0.055** and **0.075**.

Stereo Distance Falloff - Controls how fast the eye distance reduces towards the poles. This reduces eye strain at the poles when the panorama is viewed through a head-mounted display. A value of **1** reduces the

¹The area that is visible to a camera lens usually measured in millimeters. A wide angle lens provides a larger field of view and a telephoto lens provides a narrow field of view.

²Determines how much light enters a camera lens. A large aperture produces a narrow depth of field and a small aperture produces a wide depth of field.

eye distance from equator to the poles, which creates a relaxed viewing experience. This also causes flat surfaces to appear curved. A value smaller than **1** keeps the eye distance constant for a larger latitude range above and below the horizon, but it rapidly reduces the eye distance near the poles. This keeps a flat surface, but causes more eye strain near the poles, which you can reduce again by setting the pano cutoff latitude to a value less than 90 degrees.

Left/Right Stereo Filter - The left and right filter colors adjust the colors for the anaglyphic stereo effect in the render.

Swap Eyes - Swaps the left and right eye images.

Lens Shift - This is useful for architectural rendering, where you want to render images of tall buildings or structures from a similar height as the human eye, but keeping the vertical lines parallel.

Near Clip Depth - Distance from the camera to the near clipping plane, measured in meters. The main purpose is for interior scenes, where you can get a good shot of the whole room but not without a very large **field** of **view**¹, because the camera needs to stay inside the room.

With camera clipping (near plane), you can position the camera outside the room - lower the field of view and increase the clipping plane distance in front until the closest walls are clipped out. The geometry is not altered, but the camera clipping is altered, which means that shadows, reflections, and refractions are still affected by the clipped geometry.

Far Clip Depth - The distance from the camera, where objects farther than the specified distance aren't seen from the camera.

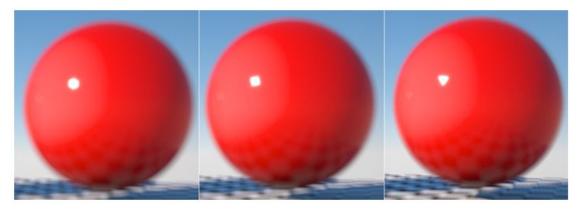
Pixel Aspect - This makes the pixel ratio non-square to accommodate older formats like NTSC or PAL.

Aperture Aspect Ratio - Stretches or squashes the depth-of-field disc.

Blackout Latitude - This is the +/- latitude where the panorama cuts off when Stereo Rendering is enabled. This defines the minimum latitude (in spherical camera coordinates) where the rendering is blacked out. The area with higher latitudes is blacked out.

Keep Upright - When enabled, the panoramic camera is always oriented towards the horizon, and the upvector stays in its default direction (vertical).

Orthographic - Makes the camera show an orthographic view. If disabled, the camera shows a perspective view.


Perspective Correction - If the up-vector is vertical, enabling this option keeps vertical lines parallel. This is useful for architectural rendering, when you want to render images of tall buildings from a similar height as the human eye, but keep the vertical lines parallel.

¹The area that is visible to a camera lens usually measured in millimeters. A wide angle lens provides a larger field of view and a telephoto lens provides a narrow field of view.

Baking Submenu - These parameters are covered in greater detail in the **Texture Baking¹** topic under the **Rendering** section in this manual.

Bokeh Rot - Adjusts the quality of highlights when depth-of-field blurring is apparent. Raising the Aperture value increases depth-of-field blurring. **Bokeh Rotation** rotates the shape of the blurred highlights. This becomes more obvious when the **Bokeh Roundness** is lowered.

Bokeh Round - Keeps blurred highlights rounded. Lowering this value reduces the roundness and increases the appearance of edges on the highlights.

Bokeh Sides - Sets the number of edges on blurred highlights.

Figure 3: From left to right, the sphere is rendered with a Bokeh roundness set to 6, 4, and 3

OSL Baking

The **OSL Baking** camera is a scriptable camera. You can create custom camera types for any purpose (such as **VR**² warping) with OSL (**Open Shader Language**³) scripts. It is a very flexible camera used to match the rendering to the existing footage. To learn about the generic OSL standard, read the <u>OSL Readme</u> and <u>PDF</u> documentation.

¹A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

²Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

³A shading language developed by Sony Pictures Imageworks. There are multiple render engines that utilize OSL as it is particularly suited for physically-based renderers.

The OSL cameras work in conjunction with other OSL features like the **OSL** texture node. While the OSL camera's parameters are identical to the **Standard** camera, the OSL Baking camera contains a unique set of camera parameters used for controlling the baking process. These parameters are covered in more detail in the **Texture Baking**¹ topic under the Rendering section of this manual.

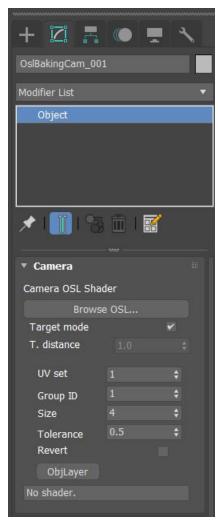


Figure 1: The OSL Baking camera parameters

¹A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

OSL Camera

The **OSL** camera is a scriptable camera. You can create custom **Camera** types for any purpose (such as **VR**¹ warping) with OSL (**Open Shader Language**²) scripts. It is a very flexible camera that matches the rendering to the existing footage. To learn about the OSL standard, refer to the <u>OSL Readme</u> and <u>PDF doc</u>-<u>umentation</u>. The OSL cameras are designed to work with other OSL features, such as the **OSL** texture node.

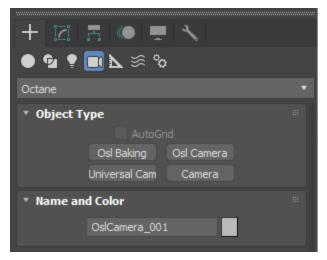


Figure 1: Accessing the OSL cameras from the Create panel

Standard Camera

Thin Lens

The **Standard** camera type is accessible from the **Camera Type** parameter's dropdown in the **Modify** panel. The Standard camera is the typical **Camera** type used for most rendering scenarios.

¹Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

²A shading language developed by Sony Pictures Imageworks. There are multiple render engines that utilize OSL as it is particularly suited for physically-based renderers.

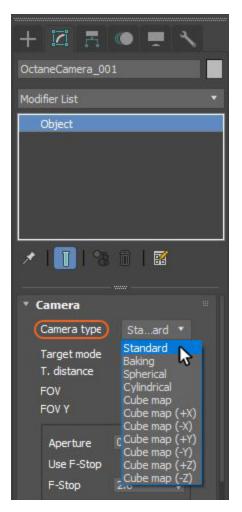


Figure 1: Selecting the Standard (Thin Lens) camera type from the Modify panel

The Standard camera parameters are covered in more detail in the **Camera Settings** topic in this manual.

Baking

The **Baking** camera type renders lighting, texture, and material data directly into texture maps. This process is covered in greater detail in **Texture Baking¹** topic under the **Rendering** section in this manual.

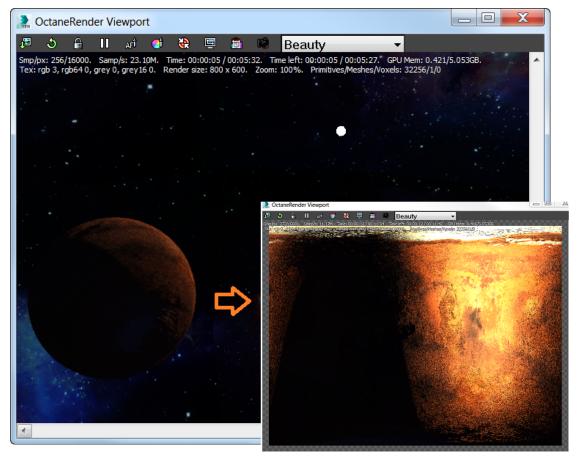


Figure 1: Lighting and material data bake to a Texture map using the Baking camera

Panoramic

¹A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

The **Panoramic** camera type is accessible from the **Camera Type** parameter dropdown in the **Modify** panel. The Panoramic camera is used for rendering VR^1 -related images. There are three types of Panoramic cameras available: **Spherical**, **Cylindrical**, and various **Cube Map** types (+x, -x, +y, -y, +z, -z).

+ 🖾 🖪	• 💻 🔧								
OctaneCamera_001									
Modifier List 🔹									
Object									
1 1 8									
* Camera									
Camera type	Spherical 🔻								
Target mode	Standard Baking								
T. distance FOV	Spherical Cylindrical								
FOV Y	Cube map Cube map (+X)								
	Cube map (-X) Cube map (+Y)								
Aperture	Cube map (-Y)								
Use F-Stop	Cube map (+Z) Cube map (-Z)								
F-Stop	2								

Figure 1: Accessing the Panoramic camera types from the Modify panel

Panoramic camera parameters are covered in more detail in the **Camera Settings** topic in this manual.

¹Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

Universal Camera

The **Universal** camera is a full-featured camera, with support for five different camera types:

- Thin lens
- Orthographic
- Fisheye
- Equirectangular
- Cubmap

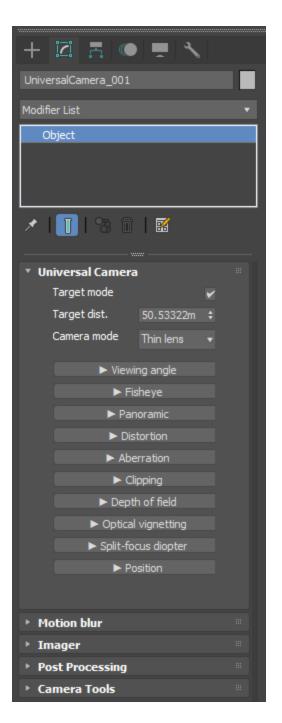


Figure 1: Universal Camera Parameters

Universal Lens Parameters

Target mode - Adds a target item to help orient your light direction.

Target Dist. - Set the target a specific distance from the source.

Camera Mode - Options to set your camera type.

Viewing Angle

- Field Of View¹ The horizontal field-of-view, measured in degrees.
- Lens Shift X The lens shift on X, as a factor of the image width.
- Lens Shift Y The lens shift on Y, as a factor of the image height.
- Lens Shift Z The lens shift on Z, as a factor of the image depth.
- **Pixel Aspect Ratio** The pixels' X:Y aspect ratio.

Fisheye

- Field Of View The camera's field of view, measured in degrees.
- Fisheye Type Choose between covering the lens circle in the sensor, or covering the whole sensor.
- Hard Vignette Renders the lens (Circular fisheye only).
- Fisheye Projection The projection function used for the fisheye.

Panoramic

- Horizontal Field of View The horizontal field of view, in degrees. This sets the X-coordinate for the camera's horizontal field of view in the scene. This is ignored when cube mapping is used.
- Vertical Field of View The vertical field of view, in degrees. This sets the Y-coordinate for the camera's vertical field of view in the scene. This is ignored when cube mapping is used.
- Cubemap Layout Determines the configuration for laying out the cubemap.
- Equi-angular Cubemap Activates an equi-angular cubemap projection.

Distortion

- Use Distortion Texture Enables the distortion texture.
- **Distortion Texture** The Distortion texture input.
- Spherical Distortion The amount of spherical distortion.
- **Barrel** Straight lines appear curved.
- Barrel (Corners) Straight lines appear curved, affecting corners.

Aberration

- **Spherical** Rays hitting the edge of the lens focus closer to the lens.
- **Coma** Rays hitting the lens edge have a larger field of view.
- Astigmatism Sagittal and tangential rays focus at different distances from the lens.
- Field Curvature The curvature of the plane in focus.

¹The area that is visible to a camera lens usually measured in millimeters. A wide angle lens provides a larger field of view and a telephoto lens provides a narrow field of view.

Clipping

- **Near Clip Depth** Distance from the camera to the nearest clipping plane, measured in meters.
- Far Clip Depth Distance from the camera to the farthest clipping plane, measured in meters.

Depth of Field¹

- Focus Type
 - **Auto-Focus** Keeps the focus on the closest visible surface at the center of the image. This setting is on by default.
 - Focal Depth Define the focus distance.
 - Target Focus Use the camera target to define focus.
- **Focal Depth** The depth of the plane in focus, measured in meters. If you are having trouble seeing a result when you adjust this setting, double-check to make sure that Auto-Focus is enabled. Auto-Focus overrides the Focal Depth setting.
- Use F-Stop And F-Stop Controls the field-of-view and depth-of-field, similar to a real-world camera. The F-Stop value is the aperture-to-focal-length ratio.
- **Aperture**² The radius of the camera's lens opening, measured in centimeters. Low values have a wide depth-of-field, where everything is in focus. High values have a shallow depth-of-field, where objects in the foreground and background will be out of focus.
- Aperture Aspect Ratio This allows users to squash and stretch the depth-of-field disc.
- **Aperture Shape** Controls the shape of the aperture.
- **Aperture Edge** Modifies the relative distribution of rays across the aperture, impacting the hardness of the edges of bokeh shapes. Higher values increase the contrast towards the edge. Values between 0 and 1 simulate an apodization filter.
- **Aperture Blade Count** The number of blades forming the iris diaphragm.
- Aperture Rotation The rotation of the aperture shape in degrees.
- Aperture Roundness The roundness of the blades forming the iris diaphragm.
- **Central Obstruction** Simulates the obstruction from the secondary mirror of a catadioptric system. This option is only enabled on circular apertures.
- Notch Position Determines the position of the notch on the blades.
- Notch Scale Scale of the notch.
- **Custom Aperture** Sets the custom aperture opacity map. The projection type must be set to OSL Delayed UV.

Optical Vignetting

¹The distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image. Although a lens can precisely focus at only one distance at a time, the decrease in sharpness is gradual on each side of the focused distance, so that within the DOF, the unsharpness is imperceptible under normal viewing conditions. source: wikipedia (https://en.wikipedia.org/wiki/Depth_of_field)

²Determines how much light enters a camera lens. A large aperture produces a narrow depth of field and a small aperture produces a wide depth of field.

- **Optical Vignetting Distance** The distance between the lens and the opening of the lens barrel.
- **Optical Vignetting Scale** The scale of the opening of the lens barrel relative to the aperture.

Split-Focus Diopter

- **Enable** Enables the split-focus diopter.
- **Diopter Focal Depth** Depth of the plane in focus measured in meters.
- **Diopter Rotation** Rotation of the split-focus diopter in degrees.
- Diopter Translation Translation of the split-focus diopter.
- Diopter Boundary Width Width of the boundary between the two fields.
- **Diopter Boundary Falloff** Controls how quickly the Split-Focus diopter focal depth blends into the main focal depth.
- Show Diopter Guide Displays guide lines, toggling this option on or off will restart the render.

Position

• **Keep Upright** - The panoramic camera always orients towards the horizon, and the up-vector stays in its default vertical direction (0, 1, 0).

Camera Imager Settings

You can access the **Camera Imager Settings** from the **Camera** tab in the **Render Setup** window, or from the **Modify** panel if you added an OctaneRender[®] **Camera** to the scene.

Target: Preset:			Production Rendering Mode Render Render										
1.11													
Renderer		Octan	eRender 20	23.1	- 14.03	}		•	Save F	ile			
View to F	Render:	Quad	4 - Perspec	tive									Ô
Commo	n Ke on Blur	rnel	Camera	C	Devices	То	ols	Support	Accou	unt	Render	Elem	ents
▼ Imag	er												
	Current 1	Fone ma	apping:	Vie	wport: I	IDR, Re	enderer	: HDR					
	Exposure			1.8	77		Hotpi>	el remov	al ().67			
1	Vignettin	g		0.3									
1	White ba	lance					Satura	tion	1	.0			
	Disable p	artial al	pha				Dither	ing			~		
	Min disp.	sample	s				Tonen	nap interv	/al 2	20			
	000 -												
	OCIO v	view					N	one (sRGE	3)				
	OCIO I	ook						None					
	Force to	one ma	oping										
			one view'										
	Tone M	apping											
	ACES to	one ma	pping		~								
	Highlig	ht comp	ores.										
	Saturat	ion to v	/hite										
	Order												
	Respon	se											
	Gamma	3											
	Neutral	respon	se										
	Custom	LUT					Bro	wse Cube					
	LUT Str	rength											
	Contraction	Ation	olcor										
	Spectral						Blend			0.0			
	Enable		npletion	•				se volume		0.0			
			amples	1				denoiser i		20	×		
	i min de									20			
	Upsamp	oler											
	Samplin		e		No up-s	amplind	1						
	Enable AI up-sampling				~								
			n completio	on									
	Min. u.s												

Figure 1: Accessing the Camera Imager settings from the Render Setup window

The **Modify** panel for Octane Camera and Universal Camera have similar **Imager** settings.

UniversalCamera_001									
Modifier List									
Object									
× 🚺 🗞 🛍 🛙	*								
Universal Camera									
Motion blur									
• Imager									
Exposure	1.0	۵.							
Highlight compres.	0.0	•							
Order .									
Response, Gamma,	LUT 🖣								
Response									
Agfacolor_HDC_400) plusCl 🔻								
Neutral response									
Gamma	1.0	÷							
	Cube file.								
Strength	1.0	¢							
White point		-							
Vignetting	0.0								
Saturation	1.0								
Hot pixel removal	1.0								
Pre-multiplied alpha									
Disable partial alpha									
Dithering									
Saturate to white	0.0								
Min disp. samples									
Tonemap int.	10								
OCIO view	->								
None (sRG	3)								
	None								
Force tone mapping									
Enable denoising									
Denoise volumes									
Denoise on completion		~							
Min. denois smpl	10								
Max. denois interv.	20	÷							
Blend	0.0	÷							
Sampling mode									
No up-sampling									
Enable AI upsampling		~							
Upsample on completic	n	×							

Figure 2: Camera Imager settings from the Modify panel.

Camera Imager Parameters

Current Tone Mapping¹ - Display the dynamic range settings used for the viewport and renderer.

Exposure - Controls the scene's exposure. Low values create a dark scene, while high values brighten the scene. Exposure has no effect on any of the render layer passes.

Hot Pixel Removal - Removes bright pixels (known as fireflies) during the rendering process. Many pixels can disappear if the render progresses, so this feature removes the bright pixels at a much lower sample per pixel.

Vignetting - Darkens the corners of the render, which increases the render's realism. OctaneRender[®] doesn't apply vignetting to any of the beauty passes except the main pass.

White Balance - Specify the color to adjust the tint for producing and simulating the relative temperature cast throughout the image by different light sources. The white point is white by default.

Saturation - Adjusts the amount of color saturation for the render.

Disable Partial Alpha - Makes semi-transparent pixels opaque (where the Alpha is greater than 0).

Dithering - Adds random noise, which removes banding in very clean images.

Minimum Display Samples - The minimum amount of samples that OctaneRender[®] calculates before displaying the image. This feature reduces the noise when navigating, and it's useful for real-time walkthroughs. When using multiple GPUs, we recommend setting this value as a multiple of the number of available GPUs for rendering - if you're rendering with four GPUs, set this value to **4** or **8**.

Tonemap Interval - Maximum interval between tonemapping operations (in seconds).

OCIO View - OCIO View to use when displaying in the **Render Viewport**. OCIO Config file is set in Octane preferences.

OCIO Look - OCIO Look to apply when displaying in the **Render Viewport**, if using an OCIO view. OCIO Config file is set in Octane preferences.

Force Tone Mapping - Whether to apply Octane's built-in tone mapping (before applying any OCIO look(s)) when using an OCIO view. This may produce undesirable results due to an intermediate reduction to the sRGB color space.

¹Refers to applying a curve to an image to reduce dynamic range

Force Linear None View - When OCIO view is set to None, use Linear sRGB instead of sRGB. This can be useful to save as **EXR**¹ via 3ds max saving format, but note that no tone mapping can be applied in this mode. It is preferred to use an OCIO config with a Linear Raw view.

ACES Tone Mapping - Use the ACES 1.2 RRT + sRGB ODT. If enabled, all other tone mapping settings will be ignored.

Highlight Compression - Reduces burned out highlights by compressing them and reducing their contrast.

Saturation To White - Creates multicolored reflections when the sun is too bright. Increasing this value changes the colors to white. This is also applicable to all sources of light.

Order - Determines the order that OctaneRender[®] applies the Response, **Gamma**², and **Custom LUT** (Custom Look Up Table) to the scene. 3D LUTs are defined for sRGB input values - you should apply the custom LUT last, but if there are 3D LUTs for linear input data, then apply the Custom LUT first.

Response - Select the use of measured camera response curves, which provides various pre-defined color grades to a rendering.

Response	Agfacolor_Futura_100CD 🔹							
l	Agfacolor_Futura_100CD							
+	Agfacolor_Futura_200CD							
	Agfacolor_Futura_400CD							
	Agfacolor_Futura_II_100CD							
	Agfacolor_Futura_II_200CD							
	Agfacolor_Futura_II_400CD							
	Agfacolor_HDC_100_plusCD							
	Agfacolor_HDC_200_plusCD							
	Agfacolor_HDC_400_plusCD	Ξ						
	Agfacolor_Optima_II_100CD							
	Agfacolor_Optima_II_200CD							
	Agfacolor_ultra_050_CD							
	Agfacolor_Vista_100CD							
	Agfacolor_Vista_200CD							
	Agfacolor_Vista_400CD							
x (Agfacolor_Vista_800CD							
	Agfachrome_CT_precisa_100CD							
	Agfachrome_CT_precisa_200CD							
	Agfachrome_RSX2_050CD							
	Agfachrome_RSX2_100CD							
	Agfachrome_RSX2_200CD							
	Advantix_100CD							
	Advantix_200CD							
z	Advantix_400CD							
	Gold_100CD							
+×	Gold_200CD							
	Max_Zoom_800CD							
	Portra_100TCD							
	Portra_160NCCD	_						
	Portra_160VCCD	× .						

Figure 2: Listing the various types of response curves available in OctaneRender®

¹Also known as OpenEXR. This image file format was developed by Industrial Light & Magic and provides a High Dynamic Range image capable of storing deep image data on a frame-by-frame basis. ²The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications. **Gamma** - Adjusts the render's gamma and controls the image's overall brightness.

Neutral Response - The camera response curve doesn't tint the render result.

Custom LUT - Choose a custom LUT.

LUT Strength - Controls the influence of the LUT.

Enable Denoising - Enables the spectral AI denoiser. This applies denoise to some beauty passes, including the main beauty pass, and writes the outputs into separate denoiser render passes.

Blend - Accepts a value between **0** and **1** to blend the original image with the denoised results. A value of **0** results in a total denoised image, and a value of **1** results in an image without any denoising.

Denoise On Completion - The beauty pass denoises once at the end of a render. Disable this option while rendering with the **Interactive Region** tool.

Denoise Volumes - The spectral AI denoiser denoises **Volumes** in the scene.

Min. Denoiser Samples - The minimum number of samples taken per pixel before the denoiser begins processing.

Max. Denoiser Interval - The maximum interval between denoiser runs (in seconds).

Sampling Mode - Selects the upsampler mode for rendering. The image renders at a lower resolution divided by the sampling mode, then it upscales to the final resolution.

Enable AI Up-Sampling - When you have an Upsampler Mode selection made and you enable this option, the render scales by using AI upsampling. Otherwise, scaling is done using traditional methods.

Up-Sampling on Completion - Beauty passes upsample once at the end of a render.

Min/Max U.S. Samples - The minimum and maximum number of samples per pixel until the upsampler activates. This parameter does not apply if you select No Upsampling in Upsampler Mode.

Camera Motion Blur Settings

The **Motion Blur¹** parameters controls the shutter interval. The value is relative to the frame time. Shown below are the **Motion Blur** parameters under the **Render Setup** window, but similar settings are found under the **Modify** Panel of **Octane Camera** and **Universal Camera**.

¹An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

🤰 Render Setu	3 Render Setup: OctaneRender - X									
Target:	Productio	n Renderir	ng Mode			Dend				
Preset:						Render				
Renderer:	OctaneRe	ender			Sav	e File				
View to Render:	Quad 4 -	Perspectiv	e				• 6			
Common Kernel	Camera	Devices	Tools	Support	Account	Render	Elements			
▶ Camera										
 Motion Blur 										
Motion blur				Shutte	er time	100.	0 \$			
Motion blur durat	ion 1.0	on 1.0 💠 Subframe			me start	0.0				
Shutter alignmen	t After			Subfra	ime end	100.	0 \$			
▶ Imager										
Post Process	sing									
Camera Tool	s									
- - -										

Figure 1: Octane Motion Blur settings in the Render Setup window

Motion Blur Parameters

Override Motion Blur - Replaces the global settings with its own camera motion blur settings. The global settings can be round in Render Setup > Camera Tab > Motion Blur.

Motion Blur - Enables or disables motion blur for the camera.

Motion Blur Duration - Overall control of motion blur settings.

Shutter Alignment - Specifies how the shutter interval aligns to the current time, which determines when the camera shutter is triggered. The options are **Before**, **Symmetrical**, or **After**, and they apply to each frame thereafter relative to the given frame rate.

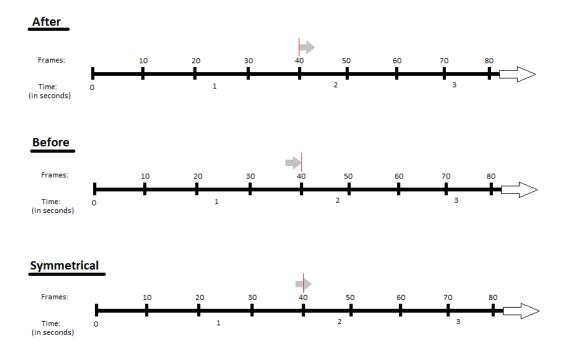


Figure 2: Illustrating the After, Before, and Symmetrical Shutter Alignment

Shutter Time - The shutter time percentage relative to the duration of a single frame, which controls how much time the shutter stays open. You can set this parameter to any value above **100%**.

Subframe Start/Subframe End - Specifies the approach, in terms of proportion (%) to simulate the camera's shutter speed for that particular frame. OctaneRender uses Subframe Start and End percentages to render only a portion of a particular frame. If the scene has a lot of motion blur, OctaneRender[®] uses these parameters to render a piece of that motion blur. The default Start and End values of **0%** and **100%**, respectively, render the whole frame.

Note: Motion Blur with **Displacement**¹ is currently not supported.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

Camera Post Processing Settings

The **Post-Processing** provides lens effects to help mimic a real camera. Shown below are the **Post-Processing** parameters under the **Render Setup** window, but similar settings are found under the **Modify** Panel of **Octane Camera** and **Universal Camera**.

🔝 Render Setu	ip: Oct	-		\times				
Target:	Produ	ction Rende	ring Mode		•	D	ender	
Preset:					•	Kt	ender	
Renderer:	Octan	eRender 202	3.1 - 14.03		▼ [Save File		
View to Render:	Quad	4 - Perspect			• 🔒			
Common Ke	ernel	Camera	Devices	Tools	Support	Account	Render E	lements
▶ Camera								
Motion Blur								
Imager								
 Post Process 	sing							
Enabled								
Cutoff				Glare	e rays			
Bloom po	ower			Glare	e blur			
Glare po	wer			Sprea	ad start			
Glare and	gle			Sprea	ad end			
Chromat	ic aber.			Spec	tral shift			
Vol. effec	cts				tral intensit	y 0.0		
				Lens				
				Lens	flare ext.			
▶ Camera Too	ls							

Figure 1: Octane Post Processing¹ settings in the Render Setup window

Post Processing Parameters

Enable - Enables post-processing effects on the render. Post-processing is disabled by default.

¹Effects such as Bloom and Glare that are applied after a scene has been rendered.

Cutoff - Applies bloom/glare to pixel values above the Cutoff value.

Bloom Power - Controls the size and intensity of the halo around the sun, light source, or reflective **Glossy1** materials.

Glare Power - Controls the size and intensity of the glare originating from reflective Glossy materials.

Glare Angle - Adjusts the glare rotation relative to the object. A glare angle of **-90** and **90** results to one main horizontal glare, and a glare angle of **0** results to one main vertical glare.

Chromatic Aberration - Controls the intensity of the color fringingon the edges of objects.

Volume Effects - Allows for a Post Volume Effects node to be added. See the Post Processing Effects article for more details.

Glare Rays - Controls the number of visible rays radiated or reflected.

Glare Blur - Controls the glare sharpness. Smaller values result in a crisp linear glare, and this is softened with higher values.

Spread Start/End - The minimum and maximum blur radius as a proportion of the image width and height (whichever is larger).

Spectral Shift - Adjusts the spectrum displacement as the source's emitted light frequency changes. The shift is evident by a color change, similar to the doppler effect.

Spectral Intensity - Adjusts the intensity distribution of the rays across a source. This affects the radiant energy's brightness.

Lens Flare - Determines the intensity of the lens flare.

Lens Flare Extent - Controls the overall length and distance between the lens flare highlights.

¹The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.


Sample Images With Post-Processing Applied

(Bloom and Glare on a ring)

(Bloom effect)

(Sun glare)

Figure 2: Renders using post-process effects

Camera Tool Settings

Camera Tool can be used to copy and paste settings between Cameras. Shown below are the **Camera Tool** parameters under the **Render Setup** window, but similar settings are found under the **Modify** Panel of **Octane Camera** and **Universal Camera**.

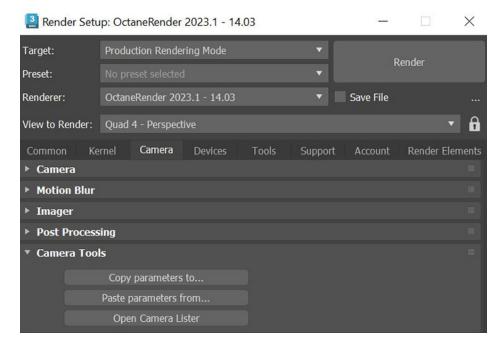


Figure 1: Octane Camera Tools settings in the Render Setup window

Camera Tool Parameters

Copy parameters to... - Copy camera settings to viewport camera or clipboard.

Paste parameters from... - Copy camera settings from viewport camera or clipboard.

Open Camera Lister - Opens a window that lists all the Octane and/or non-Octane cameras in a scene for easy access.

Render Setup

Rendering in 3DS Max[®] for OctaneRender[®] consists of utilizing the **OctaneRender Viewport** in conjunction with the standard 3DS Max frame buffer to produce final renders or animations. The typical rendering workflow is to conduct test renderings with the **OctaneRender Viewport** window to develop the look, tune the lighting and shaders, and determine the amount of samples needed to eliminate noise. This sample number is then sent to **Kernel Type - Max. Samples** under the **Kernel tab** in the **Render Setup** window.

The 3DS Max batch rendering process can then render out stills or a sequence of images using OctaneRender based on these settings. You can also save still images from the OctaneRender Viewport window, so it's not always necessary to set up a batch render if you need just a single frame.

The OctaneRender Viewport updates changes to **Materials¹** and **Lights** (parameter adjustments only) without having to reload the scene onto the **GPU**². Most transformations made to **Objects** and **Camera** views in the scene are updated in the OctaneRender Viewport window as the image is tuned. Sometimes you need to refresh the OctaneRender Viewport render to reflect updates made to the scene. Figure 1 shows the Render Setup window with OctaneRender options.

Note: If you're rendering stills, you can do this with the OctaneRender Viewport without rendering in the 3DS Max frame buffer.

If transformations (move, scale, rotate) are made to scene geometry including lights, then you need to refresh the Viewport (reload geometry onto the GPU) to see these changes or set the objects as **Movable Proxy³**.

¹A set of attributes or parameters that describe surface characteristics.

²The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

³An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

[Ren	nder Setu	ip: Octai	neRender	and announces					_		\times
Target:		Product	ion Rende	ring Mode			•				
Preset:			et selected				•		к	ender	
Rendere	r:	Octane	Render 202	23.1 - 14.	03		•	Save	e File		
View to	Render:	Quad 4	- Perspect	ive							•
Commo	nn Ke	ernel	Camera	Device	: т	ools	Suppo	ort Arr	ount	Render	Elements
Render View Settings										Elemento	
			Aman	eRende hAutodesk@ :	(^{TV)})ds max® D	esign Soltw	are (B)	2011 - 202 © etc			
				Open (OctaneR		riewport				
	Use window resolution 🖌 Use viewport background										
	Use production AutoUpdate movable pro: 🗸										
	Render v			800	\$		h time (n	ns)	30	\$	
	Render height 600 \$ Quick mode										
	Image as	ige aspect		1.0							
			ion Cache	[Experim	ental]						
		tion cache				Cache	start				
	Cache	range				Cache	end				
	Enable s	tats in vie	wport 🗸								
	Render	statistic o	ustomizati	on							
	Samp/	pix	~	Time	elaps/to	tal 🖌		Textures		✓	
	samp/s	ec	~	Time	elaps/let	ft 🖌		Memory		~	
	Render	size	*	Zoom		~		Poly/obj	ects	~	
► Ren	der Sett	ings									
► Ren	der Laye	er									
► Spec	tial Pass	es setup)								
Pass	ses Outp	ut									
► Kern	iel Type										
▶ Path	n Tracing	1									

Figure 1: The Render Setup window

Kernel

The Kernel tab under **Render Setup** provide options to control the optimization and quality of a render. Under this section, you will find the following options:

- Render View Settings
- Render Settings
- Kernel Type
 - Direct Lighting
 - Path Tracing
 - Photon Tracing
 - PMC
 - Info Channel

🔝 Render S	etup: OctaneRer	nder			-		\times
Target:	Production R	endering Mod	le		-		
Preset:						Render	
Renderer:	OctaneRende				Save File		
View to Rende	r: Quad 4 - Per	spective					• 6
Common	Kernel Came	era Devio	es T	Fools Sup	port Account	Render f	Elements
• Render Vi	ew Settings						
	\$ \$	ctaneRende	e (¹¹⁾) 3ds max@ (1	lesign Software	B 2011 - 2021 © aloy		
		Open	OctaneR	lender viewpor			
Use w	indow resolution		~	Use viewport			
	roduction resoluti				novable pro: 🖌		
	r width	800	¢	Refresh time	(ms) <u>3</u> () 🗘	
	r height e aspect	600	¢	Quick mode		*	
and the second	mage aspect	1.0					
100 A 100	line Animation C	ache [Experin	nental]				
	nation cache			Cache start			
Cact	ne range 3dsM			Cache end			
Enable	e stats in viewpor	t 🖌					
Rend	ler statistic custor	nization					
Sam	p/pix 🗸	Time	elaps/to	otal 🖌	Textures	~	
sam	p/sec 🖌 🖌	Time	elaps/le	ft 🖌	Memory	✓	
Ren	der size 🖌 🖌	Zoon		~	Poly/objects		
► Render Se	ettings						
Render La	iyer						
Special Pa	isses setup						
Passes Out	tput						
Kernel Ty	ре						
Kerne	type	Path Traci	ng		-		
Max. s	amples	200		Alpha chan	nel		
Filter	size	1.5		Alpha shade	ow	*	
Ray e		1.0		Keep enviro	nment		
	erm. power	0.3		Irradiance			
	ty threshold	1.0		Nested diele	ectrics	~	
	ubdivision ow error log	10	¢				
Path Trac	ing						

268 — Render Setup

Figure 1: Render Setup Kernel Tab from the Render Setup window

Render View Settings

This section provide controls to define the resolution and information display on the OctaneRender Viewport.

Commo	n Kernel	Camera	Devices	; 1	Fools	Support	Account	Render	Elements		
• Rend	er View Settin	gs									
		C Octan	eRender	ingt in g	and the second	R) 2011	-2021				
o dor use with Autodesk⊕ 3ds max⊛ Design Satimate											
Open OctaneRender viewport											
ι	Jse window reso	lution		~	Use vie	wport backg	round				
ι	Jse production re	esolution			AutoUp	date movab	le pro: 🖌				
F	Render width		800		Refresh	time (ms)	30	¢			
ſ	Render height		600	¢	Quick n	node		~			
	image aspect		1.0								
l	_ock image aspec										
í	Timeline Anima		[Experime	ental]							
	Animation cach				Cache s						
	Cache range				Cache e	end					
E	Enable stats in vi	ewport 🖌									
ſ	Render statistic	customizati	ion								
	Samp/pix	~	Time e	elaps/to	otal 🖌	Tex	dures	~			
	samp/sec	~	Time e	elaps/le	ft 🗸		mory	~			
	Render size	~	Zoom		~	Pol	y/objects	~			
l.											
▶ Rend	er Settings								II		
► Rend	er Layer										
Speci	al Passes setu	р							Ш.		
► Passe	es Output										
► Kerne	el Type										
▶ Path	Tracing										

Figure 1: Render View Settings

Render View Setting Parameters

Use Window Resolution - Use the OctaneRender Viewport Window Size.

Use Production Resolution - Use the **Output Size** define from the **Common** tab.

Use Viewport Background - Use the image set as background in 3DS Max viewport. The image will be adjusted to the resolution and will be visible if the **Alpha channel** is enabled in **Kernel Type** settings.

Autoupdate movable proxy - Update mesh of **Movable Proxy**¹ when the geometry changes.

Render Width - The OctaneRender Viewport width when both **Windows** and **Production Resolution** are unchecked

Render Height - The OctaneRender Viewport height when both **Windows** and **Production Resolution** are unchecked

Image Aspect - The OctaneRender Viewport aspect ratio, render height will be automatically adjusted to match the ratio.

Refresh Time (ms) - How often to check for updates. This helps balance between viewport responsiveness and giving more time to render.

Quick Mode - Will speed up interactivity by skipping certain update checks.

Lock Image Aspect - Will adjust Render Width or Height to maintain image aspect ratio.

Enable Stats in Viewport - Display render statistics.

Render Statistic Customization - Customize options to display render statistics.

Render Settings

This section will provide additional miscellaneous render settings.

270 — Render Setup

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

Commo	on Kernel Camer	a Devices	Tools	Support Acc	ount Ren	ider Elements
► Ren	der View Settings					
▼ Ren	der Settings					
	AOV Settings					
	Viewport Tone mapping	HDR	👻 Ren	d. Tone mapping	HDR	v
Q	Clay mode	Normal Rende	e 🔻 Prer	mult. alpha	None	v
	Notify objects on render	Never	👻 Upd	late static geo.	~	
	Subsampling		Ena	ble displacement	*	
			3ds	Max gamma hack	~	
	Out of Core settings					
	Enable Out of Core dat					
	RAM memory limit [GB]				
	GPU head room [MB]	512.0 🛟				
	Mat. preview spp	64 🛟				
	Mat. preview W/H	256 🗘 25	6 🜲			
4	IES distribution visualized					
	Generate visualization			shaded viewports		
	Show max. candela	Shap	e opacity		1.0	¢
► Ren	der Layer					
	cial Passes setup					
▶ Pass	ses Output					
► Kern	nel Type					
▶ Path	n Tracing					

Figure 1: Render Settings

Render Setting Parameters

AOV Settings - Opens the AOV Settings window used for compositing AOVs.

Viewport Tone Mapping¹ - Defines the color depth to display in the OctaneRender Viewport. Options are **LDR**²: 8-bit, HDR: 32-bit, and HDR Half: 16-bit.

¹Refers to applying a curve to an image to reduce dynamic range

 $^2 {\rm Image}$ formats that have 8 bits per color channel such as the common image formats JPEG, PNG, GIF among others.

271 — Render Setup

Render Tone Mapping - Defines the color depth for final render output (Render Setup Render Button). Options are LDR: 8-bit, HDR: 32-bit, and HDR Half: 16-bit.

Clay Mode - Grey color override for all materials.

Premultiply Alpha - Determines the type of premultiplied alpha.

- None: Color channel values are not multipled with alpha channel values.
- **Linearized**: Color channel values are multiplied with alpha channel values before applying the output color space's transfer function.
- **Encoded**: Color channel values are multiplied with alpha channel values after applying the output color space's transfer function.

Update Static Geo - Update static geometry (non movable proxy) if it's animated. Note that if one static object is animated, all objects must be re-created (reduce performance).

Notify Objects on Render - Setup objects for rendering. Can be needed for some modifiers or plugin objects when 2 mesh can be created, one simplified for the viewport, and one for rendering. Note that this can be very slow if enabled for all objects. When needed, please use 'Per object' instead, enable it in the Octane Object properties, only for those objects.

Enable Displacement¹ - Enable or disable displacement maps in all materials.

Subsampling - Sets the sub-sampling mode. Valid values are 1: None, 2: 2x2, 4: 4x4.

3DS Max Gamma² Hack - A workaround for the lack of separate gamma setup for the render view in 3ds max.

Out of Core Settings

- Enable Out of Core data Enable Out of Core Memory. This allows using your RAM memory to store any kind of out of core data, like textures and geometry.
- RAM Memory Limit (GB) Maximum amount of RAM memory to use (in Gigabytes).

GPU³ Head Room [MB] 512 - Amount of GPU memory to leave free, to allow for the overhead of running the kernels (in Megabytes).

Material⁴ Preview SPP - Quality of the preview images in Material Editor (samples per pixel).

⁴The representation of the surface or volume properties of an object.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

²The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

³The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Material Preview W/H - Texture size used in 3DS Max Viewports - See also 3DS Max settings in 'Configure Viewports' > 'Display Performance'.

IES¹ Distribution Visualisation

- Generate Visualisation Display distribution of IES lights in 3DS Max viewport.
- Show as Shape in Shaded Viewports Display distribution as shape or wireframe.
- Show Max Candela Display the maximum candela value from the IES file.
- Shape Opacity Opacity amount, when displaying distribution as a shape.

Kernel Type

A **Kernel** in OctaneRender[®] is the central part of the rendering engine that interfaces with the rendering hardware (graphics card or GPU^2). There are five major rendering Kernels³ in OctaneRender:

- Direct Lighting
- Path Tracing
- Photon Tracing
- PMC
- Info Channel

Each Kernel has a set of specific parameters to adjust which can be found in their specific roll-outs. The **Kernel Type** roll-out contains parameters associated with all the Kernel types (figure 1).

¹An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

²The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

³By definition, this is the central or most important part of something. In Octane, the Kernels are the heart of the render engine.

Common	Kernel	Camera	Devices	Tools	Support	Account	Render Elements
► Rende	r View Settin	gs					
► Rende	r Settings						
► Rende	r Layer						
Specia	l Passes setu	р					
Passes	Output						
 Kernel 	Туре						
Ke	ernel type	Pat	th Tracing				
Ma	ax. samples	20	0 🗘	Alpha	channel		
Fil	lter size	1.5		Alpha	shadow		~
Ra	ay epsilon	1.0) 🗘	Keep	environment		
Pa	ath term. power	0.3	\$ \$	Irradia	ance		
Op	pacity threshold	1.0) 🗘	Neste	d dielectrics		¥
Ma	ax subdivision	10					
	Show error lo	g					
► Path T	racing						

Figure 1: Kernel Types

Kernel Type Parameters

Kernel Type - Select between 5 Kernel Types: Direct Light, Path Tracing, Photon Tracing, PMC, and Info Channel.

Maximum Samples - This sets the maximum number of samples per pixel before the rendering process stops. Higher values create cleaner renders. There is no rule as to how many samples per pixel create a good render, it is dependent on the scene.

Filter Size - This sets the render filter's pixel size. This improves aliasing artifacts in the render. If the value is too high, the image becomes blurry.

Ray Epsilon - The distance to offset new rays so they don't intersect with the originating geometry. We recommend leaving this value at the default setting.

Path Termination Power - High values increase render speed, but increase noise in the dark areas.

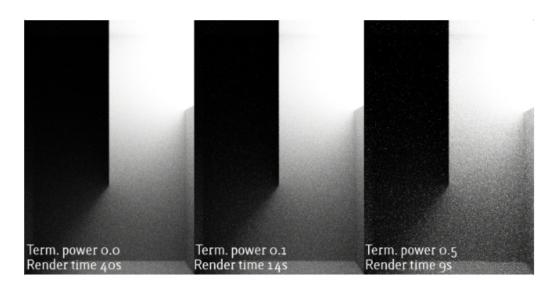


Figure 2: A comparison of Path Termination powers

Opacity Threshold - Geometry with an **Opacity** value that's greater than or equal to this value is treated as totally opaque.

Max Subdivision - The maximum subdivision level applied to geometry in the scene. A value of **0** disables this parameter.

Alpha Channel¹ - This option removes the background and renders it as transparent (zero alpha). This is useful if you want to composite the render over another image and don't want the background to be present.

Alpha Shadow - This setting allows any object with transparency (**Specular**² materials, **Materials**³ with **Opacity** settings and **Alpha Channels**) to cast a shadow instead of behaving as a solid object.

Keep Environment - Use this option in conjunction with the Alpha Channel setting. The background renders with zero alpha, but is still visible in the final render. This allows more flexibility in compositing images.

Irradiance - Displays the rendering with light energy, but no material characteristics.

Nested Dielectrics - Enables nested dielectrics. If disabled, the surface IORs and priorities are ignored.

¹A greyscale image used to determine which areas of a texture map are opaque and which areas are transparent.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

³A set of attributes or parameters that describe surface characteristics.

Direct Light

The **Direct Light** kernel renders previews faster. Direct lighting is not unbiased, and is not meant for photorealism. This Kernel is good for creating quick animations or renders (figure 1).

С	omm	on	Kernel	Can	nera	Device	s	Tools	Supp	ort	Accour	nt f	Rende	r Elements
Þ	Ren	der Vie	ew Set	tings										
•	Ren	der Se	ttings											
•	Ren	der La	yer											
•	Spe	cial Pa	sses se	tup										
Þ	Pase	ses Oul	tput											
►	Keri	nel Typ	e											
•	Dire	ect Ligh	it											
		Quality	y											
		GI mo	de	A	mbien	Occlusic	•	Specu	lar depth	1	5			
		Glossy	depth		2		¢	Diffus	e depth		2			
		Maxim	al overla	apping	4			AO di	stance		3.	0	¢	
		AO tex	ture					T	ype		None	▼		
		Light												
		AI ligh	t					AI lig	ht update	è				
			Ds Actio	on		Disable	-							
		L.IDs:				2	3	4	5			8		9
			10	11	12	13	14	15	16	17	18	19		20
		L. inv:				2			5					9
			10	11	12	13	14	15	16	17	18	19		20
		Sampl	ing											
			ent ratio		0.0		¢	Static	noise					
		Paralle	l sample	es	8		¢	Max. I	ile samp	les	10		\$	
		Minimi	ze net t	raffic			~							
		Adapti	ive sam	pling										
		Adapti	ve samp	oling				Noise	threshol	d	0.	03		
		Min. ad	daptive :	samples	25	5		Group	pixels		2	x2	•	
		Expect	ed expo	sure	1.0									
		Color												
		White I	light spe	ectrum	Le	gacy/1 🔻								
		Deep i	mage											
		Deep i	mage					Deep	render A	OVs				
	Max. depth samples 8			Depth tolerance			e	0.	05	\$				
	Toon shadow ambient													
	Compatibility mode			Latest	(2022	.1)			•					

277 — Render Setup

Figure 1: The Direct Light kernel parameters

Direct Light Kernel Parameters

Quality

GI Mode - There are three different Global Illumination Modes in the Direct Light kernel:

- **None** Includes just the direct lighting from area lights. Areas with indirect lighting get no contribution and become black.
- Ambient Occlusion Standard ambient occlusion.
- **Diffuse¹** An indirect diffusion with a configuration to set the number of indirect diffuse bounces. This gives a GI quality that is in-between ambient occlusion and path tracing, without caustics and with a decent, realistic quality that's better than AO, but much faster than path tracing/PMC. It's very good for quick final renders and animations. It's similar to brute force indirect GI in other engines.

Specular² Depth - Controls the number of times a ray refracts before dying. Higher values mean higher render times, but more color bleeding and more details in transparent **Materials³**. Low numbers introduce artifacts or turn some refractions into pure black.

Glossy⁴ Depth - Controls the number of times a ray reflects before dying. Higher values mean higher render times. Values lower than **4** can introduce artifacts or turn some reflections into pure black.

Diffuse Depth - Gives the maximum number of diffuse reflections if GI Mode is set to **Diffuse**.

Maximal Overlapping - Determines how much space to allocate for overlapping volumes. Ray marching is faster with low values but artifacts can be present where volumes overlap.

AO Distance - The ambient occlusion distance in units. Always check if the amount is correct relative to the scene scale. For example, you don't need **3** units if your object is a small toy. However, if your model is a house or something large, then increase the value.

AO Texture - Specifies an ambient occlusion color or value. If you select **None**, OctaneRender[®] uses the **Environment** instead.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

³A set of attributes or parameters that describe surface characteristics.

⁴The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

Lights

AI Light - Enables AI lights. AI light functionality learns from the scene, and rendering becomes more efficient as more samples are rendered. When used with **Adaptive Sampling¹**, AI Light becomes even more effective as it learns pixel and light importance in a scene, and some pixels are no longer sampled.

AI Light Update - Enables dynamic updates to the AI lighting.

Light IDs Action - This parameter determines whether the **L.IDs** (Light IDs) and **L. Inv** (Light Inverse) buttons enable or disable lights with matching **Light Pass ID** numbers.

Sampling

Coherent Ratio - Increasing this value increases the render speed, but introduces low-frequency noise (blotches), which may require a few hundred or even a few thousand samples per pixel to remove, depending on the scene.

Parallel Samples - Controls how many samples OctaneRender[®] calculates in parallel. Low values require less memory to store the sample's state, but rendering is slower. High values need more graphics memory, making rendering faster. The change in performance depends on the scene and the **GPU**² architecture.

Minimize Net Traffic - OctaneRender distributes the same tile to the net render nodes until it reaches the max samples/pixel for that tile, and then it distributes the next tile to render nodes. Work done by local GPUs is not affected by this option. A render node can merge all of its results into the same cached tile until the Primary Render Node switches to a different tile.

Static Noise - Makes noise static - it doesn't change between frames.

Maximum Tile Samples - Controls the number of samples per pixel that OctaneRender will render until it takes the result and stores it in the film buffer. Higher values mean results arrive less often in the film buffer.

Adaptive Sampling

Adaptive Sampling - Stops sampling pixels that reach a specified noise threshold. This lets the kernel focus its processing on areas that still need refinement.

Min. Adaptive Samples - Specifies the minimum number of samples to calculate before Adaptive Sampling kicks in. The pixel's noise estimate has a large initial error. If you set the noise threshold to a high value, then you should set Min. Adaptive Samples to a high value to avoid artifacts.

¹A method of sampling that determines if areas of a rendering require more sampling than other areas instead of sampling the entire rendering equally.

²The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Noise Threshold - When Adaptive Sampling is enabled, Noise Threshold specifies the smallest relative noise level. When a pixel's noise estimate is less than this value, OctaneRender[®] turns off sampling for this pixel. Good values are in the range of **0.01** - **0.03**. The default is **0.02**, which is pretty clean.

Group Pixels - When Adaptive Sampling is enabled, Group Pixels specifies the number of pixels that are handled together. If all pixels of a group reach the noise level, sampling stops for all of these pixels.

Expected Exposure - This parameter's value should be about the same value as the image exposure, otherwise set it to **0** (the default value) to ignore these settings. Adaptive Sampling uses this parameter to determine what pixels are bright and dark. This depends on the exposure setting in the Octane Imager. If the value is not **0**, Adaptive Sampling adjusts the noise estimate of very dark areas of the image. It also increases the **Min. Adaptive Samples** limit for very dark areas, because they tend to find paths to light sources irregularly, resulting in an over-optimistic noise estimate.

Color

White Light Spectrum - Controls the appearance of colors produced by spectral emitters. This value determines the spectrum that will produce white in the final image. The D65 setting will produce a reasonable daylight color. The Legacy/Flat setting will preserve the appearance of legacy projects where the spectral emitters appear more blue.

Deep Image

Deep Image1 - Enables rendering deep pixel images used for deep image compositing.

Max. Depth Samples - Used when Deep Image is enabled. This sets the maximum number of depth samples per pixel. For more information, see the Deep Image Rendering topic in this manual.

Deep Render AOVs - Includes rendering AOVs in deep pixels.

Depth Tolerance - Used when deep image rendering is enabled. OctaneRender[®] merges the depth samples whose relative depth difference falls below this tolerance value together. This is covered in the Deep Image Rendering section in this manual.

Toon Shadow Ambient - Modifies the shadow ambient for toon shading.

Compatibility Mode - The Octane version that the behavior of this node should match.

- Latest (2022.1) Default
- 2021.1 Volume tracing behavior from versions 2018.1 to 2021.1 is used.
- 2021.1 (with 4.0 volumes) Volume tracing behavior from version 4.0 and earlier is used.
- **2018.1** Volume tracing behavior from versions 2018.1 to 2021.1 is used. Original pipeline for converting colors to and from spectra and for applying white balance is used (textures with colors outside of sRGB gamut will be rendered inaccurately).

¹Renders frames with multiple depth samples in addition to typical color and opacity channels.

• **4.0** - Volume tracing behavior from version 4.0 and earlier is used. Original pipeline for converting colors to and from spectra and for applying white balance is used (textures with colors outside of sRGB gamut will be rendered inaccurately).

Path Tracing

The **Path Tracing** kernel is best for realistic renderings, although the render times are slower than the **Dir**ect Lighting kernel. Path Tracing has difficulties with small light sources and proper caustics, for which **PMC** is a better option.

Comm	on Kernel	Camer	а	Device	5	Tools	Suppo	ort 4	Account	Ren	der	Elements
► Ren	der View Sett	ings										
► Ren	der Settings											
▶ Ren	der Layer											
▶ Spe	cial Passes set	tup										
► Pas	ses Output											
► Ker	nel Type											
▼ Pat	h Tracing											
	Quality											
	Diffuse depth				¢	Specula	r depth		16	÷		
	Scatter depth					Maxima	l overla	pping		÷		
	Caustic blur		0.0			GI clam	p		100	0000. (
4	Light											
	AI light					AI light	update					
	Light IDs Actio	n	D	isable	•							
	L.IDs: s			2			5			8	9	
	10	11	12	13	14	15	16	17	18	19	20	
	L. inv: s			2			5	6			9	
2	10	11	12	13	14	15	16	17	18	19	20	
	Sampling											
	Coherent ratio		0.0			Static n	oise					
	Parallel sample	s			¢	Max. til	e sample	es	16	÷		
	Minimize net tr	affic			~							
	Adaptive samp	lina										
	Adaptive samp					Noise th	nreshold		0.0	3		
	Min. adaptive s	amples	256			Group p	oixels		2x2	-		
	Expected expos	sure	1.0		¢							
	Color											
	White light spe	ctrum	Lena	acy/1 🔻								
			Loge	loyn .								
	Deep image											
	Deep image						nder AC					
	Max. depth san	nples				Depth t	olerance		0.0	5		
	Toon shadow a											
	Compatibility n	node		Latest (2022 1	1)			-			
				Eatost	EUZZ.	.,						

Figure 1: Path Tracing kernel parameters

Path Tracing Parameters

Quality

Diffuse¹ Depth - The maximum number of times a ray bounces, reflects, or refracts on a surface with high **Roughness** or **Diffuse** settings. Higher values mean slower render speeds, but more realistic results. For outdoor scenes, set this parameter to around **4**. For lighting interiors with natural light, use settings of **8** or higher. While high values are possible, in reality, rays won't go beyond 16 ray bounces.

Specular² Depth - Determines the maximum path depth for specular reflections and refractions.

Scatter Depth - The maximum path depth to allow scattering.

Maximal Overlapping - Determines how much space to allocate for overlapping volumes. Ray marching is faster with low values but artifacts can be present where volumes overlap.

Caustic Blur - Higher values result in less caustic noise.

GI Clamp - Clamps each path's contribution to the specified value. Reducing this value can reduce the amount of fireflies caused by sparse but very strong contributing paths. Reducing this value also reduces noise by removing energy.

Light

AI Light - Enables AI lights. AI light functionality learns from the scene, and rendering becomes more efficient as you render more samples. When used with **Adaptive Sampling**³, AI Light becomes even more effective, as it learns pixel and light importance in a scene, and some pixels are no longer sampled.

AI Light Update - Enables dynamic updates to the AI lighting.

Light IDs Action - Determines whether the **L.IDs** (Light IDs) and **L. Inv** (Light Inverse) buttons enable or disable lights with matching **Light Pass ID** numbers.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

³A method of sampling that determines if areas of a rendering require more sampling than other areas instead of sampling the entire rendering equally.

Sampling

Coherent Ratio - Increasing this value increases the render speed, but it introduces low-frequency noise (blotches), which require a few hundred or even a few thousand samples per pixel to remove, depending on the scene.

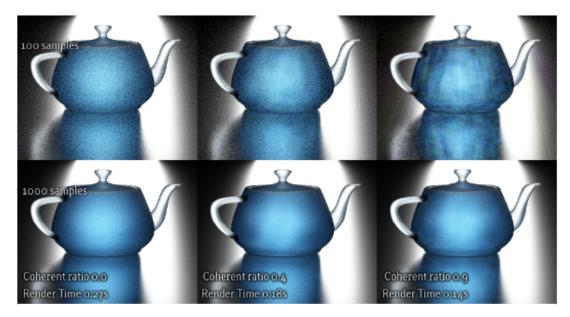


Figure 2: A comparison of different Coherent Ration settings

Parallel Samples - Controls how many samples OctaneRender[®] calculates in parallel. Small values require less memory to store the sample's state, but renders are slower. High values use more graphics memory, and rendering is faster. The change in performance depends on the scene and the GPU^1 architecture.

Minimize Net Traffic - Makes OctaneRender[®] distribute the same tile to the net render nodes until the tile reaches the max number of depth samples per pixel, and then OctaneRender[®] distributes the next tile to the render nodes. This option doesn't affect work done by local GPUs. This way, a render node can merge all of its results into the same cached tile until the Primary Render Node switches to a different tile.

Static Noise - Makes the noise static - it doesn't change between frames.

Maximum Tile Samples - Controls the number of samples per pixel that $OctaneRender^{(R)}$ will render until it takes the result and stores it in the film buffer. Higher values generate results less often in the film buffer.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Adaptive Sampling

Adaptive Sampling - Stops sampling pixels that reach a specified noise threshold, which allows the kernel to focus its processing on areas that still need refinement.

Min. Adaptive Samples - Specifies the minimum amount of samples to calculate before Adaptive Sampling kicks in. A pixel's noise estimate is just an estimate with a large initial error. If you set Noise Threshold to a high value, then set this parameter to a high value as well to avoid artifacts.

Expected Exposure - This value should match the image exposure, or set it to **0** (the default value) to ignore these settings. Adaptive Sampling uses this parameter to determine the bright and dark pixels, which depends on the exposure setting in the **Octane Imager**. If the value is not **0**, Adaptive Sampling adjusts the noise estimate of very dark areas of the image. It also increases the **Min. Adaptive Samples** limit for very dark areas since they find paths to light sources irregularly, resulting in over-optimistic noise estimates.

Noise Threshold - When Adaptive Sampling is enabled, Noise Threshold specifies the smallest relative noise level. When the noise estimate of a pixel becomes less than this value, OctaneRender[®] disables sampling for this pixel. Good values are in the range of **0.01** - **0.03**. The default is **0.02**, which is pretty clean.

Group Pixels - When Adaptive Sampling is enabled, Group Pixels specifies the number of pixels that are handled together. When all of a group's pixels reach the noise level, sampling stops for all of these pixels.

Color

White Light Spectrum - Controls the appearance of colors produced by spectral emitters. This value determines the spectrum that will produce white in the final image. The D65 setting will produce a reasonable daylight color. The Legacy/Flat setting will preserve the appearance of legacy projects where the spectral emitters appear more blue.

Deep Image

Deep Image1 - Enables rendering deep pixel images used for deep image compositing.

Maximum Depth Samples - When you enable Deep Image, this sets the maximum number of depth samples per pixel.

Deep Render AOVs - Includes rendering AOVs in deep pixels.

Depth Tolerance - When you enable Deep Image rendering, this option merges depth samples with relative depth differences that fall below this tolerance value.

Toon Shadow Ambient - Modifies the shadow ambient for toon shading.

Compatibility Mode - The Octane version that the behavior of this node should match.

¹Renders frames with multiple depth samples in addition to typical color and opacity channels.

- Latest (2022.1) Default
- **2021.1** Volume tracing behavior from versions 2018.1 to 2021.1 is used.
- 2021.1 (with 4.0 volumes) Volume tracing behavior from version 4.0 and earlier is used.
- **2018.1** Volume tracing behavior from versions 2018.1 to 2021.1 is used. Original pipeline for converting colors to and from spectra and for applying white balance is used (textures with colors outside of sRGB gamut will be rendered inaccurately).
- **4.0** Volume tracing behavior from version 4.0 and earlier is used. Original pipeline for converting colors to and from spectra and for applying white balance is used (textures with colors outside of sRGB gamut will be rendered inaccurately).

PMC Kernel

The **PMC** kernel is a custom mutating unbiased kernel written for GPUs. It lets $OctaneRender^{(R)}$ resolve complex caustics and lighting.

Co	mmor	n Kernel Cal	nera Device	es	Tools	Support	Account	Render	Elements			
	Rend	er View Settings										
	Rend	er Settings										
	Rend	er Layer										
	Speci	al Passes setup										
		es Output										
•	 Kernel Type 											
•	РМС											
		Quality										
		Diffuse depth	4	¢	Specula	r depth	16	¢				
	5	Scatter depth			Maxima	l overlapping	4					
	(Caustic blur	0.0		GI clam	р	1000	0000. 🗢				
		Light										
		AI light			AI light	undate						
		_ight IDs Action	Disable	-	, in this is	apoute						
		IDs: s e	1 2	3	4	5 6	7	8 9				
		10 11	12 13	14	15	16 17	18	o 9 19 20				
	i			3		5 6	7					
	Ļ	inv: s e	1 2 12 13	3 14	4	5 6 16 17	18	8 9 19 20				
			12 15	14	13	10 17	10	19 20	,			
		Sampling										
		Exploration strength	0.7			ght importan		\$				
		Max. rejects	500		Parallel	samples	4	\$				
	,	Work chunk size	8									
		Color										
	۱	White light spectrum	Legacy/1 🔻									
					Toon st	nadow ambier	nt 📃					
					Compat	ibility mode		atest (202				

Figure 1: The PMC kernel parameters

PMC Kernel Parameters

Quality

Diffuse¹ Depth - The maximum number of times a ray bounces, reflects, or refracts on a surface with high **Roughness** or **Diffuse** settings. Higher values mean slower render speeds, but more realistic results. For outdoor scenes, set this parameter to around **4**. For lighting interiors with natural light, use settings of **8** or higher. While high values are possible, in reality, rays won't go beyond 16 ray bounces.

Specular² Depth - Determines the maximum path depth for specular reflections and refractions.

Scatter Depth - The maximum path depth to allow scattering.

Maximal Overlapping - Determines how much space to allocate for overlapping volumes. Ray marching is faster with low values but artifacts can be present where volumes overlap.

Caustic Blur - Higher values result in less caustic noise.

GI Clamp - Clamps each path's contribution to the specified value. Reducing this value can reduce the amount of fireflies caused by sparse but very strong contributing paths. Reducing this value also reduces noise by removing energy.

Light

AI Light - Enables AI lights. AI light functionality learns from the scene, and rendering becomes more efficient as more samples are rendered. When used with **Adaptive Sampling**³, AI Light becomes even more effective as it learns pixel and light importance in a scene, and some pixels are no longer sampled.

AI Light Update - Enables dynamic updates to the AI lighting.

Light IDs Action - Determines whether the **L.IDs** (Light IDs) and **L. Inv** (Light Inverse) buttons enable or disable lights with matching **Light Pass ID** numbers.

Sampling

Exploration Strength - Determines strength for investigating accurate PMC paths.

Direct Light Importance - Makes the kernel focus more on paths with indirect light. For example, imagine sunlight through a window, which creates a bright spot on the floor. If Direct Light Importance is set to **1**, the

³A method of sampling that determines if areas of a rendering require more sampling than other areas instead of sampling the entire rendering equally.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

kernel focuses its sampling on this area. If Direct Light Importance is reduced, the kernel reduces its efforts to sample that area, and focuses more on more tricky areas that are harder for light rays to reach.

Max Rejects - Controls the render's bias. Reducing the value creates more biased results along with shorter render times.

Parallel Samples - Controls how many samples OctaneRender[®] calculates in parallel. Small values require less memory to store the sample's state, but renders are slower. High values use more graphics memory, and renders are faster. The change in performance depends on the scene, the **GPU**¹ architecture, and the number of shader processors on the GPU.

Work Chunk Size - The number of work blocks done per kernel run. Increasing this value also increases the memory requirement on the system, but it does not affect memory usage, and may increase render speed.

Color

White Light Spectrum - Controls the appearance of colors produced by spectral emitters. This value determines the spectrum that will produce white in the final image. The D65 setting will produce a reasonable daylight color. The Legacy/Flat setting will preserve the appearance of legacy projects where the spectral emitters appear more blue.

Toon Shadow Ambient - Modifies the shadow ambient for toon shading.

Info Channel

The **Info Channel** kernel evaluates scene data and renders the data as color images that you can use in post processes for compositing.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

▼ Info Channel						9
Quality						
Туре		Geometric n	ormal	•		
AO distance		3.0		AO alpha shadows		
Maximum Z-0	depth	5.0		UV max	1.0	\$
UV coordinat	e selection		\$	Max speed	1.0	\$
Bump and no	ormal mappi	ng		Wireframe backface high	nlighting	
Sampling						
Static noise				Parallel samples		¢
Max. tile sam	ples	16		Minimize net traffic		~
Color						
White light sp	pectrum	Legacy/1 🔻				
Deep image						
Deep image				Deep render AOVs		
Max. depth s	amples	8	¢	Depth tolerance	0.05	\$
				Compatibility mode	Lat	est (202:

Figure 1: The Info Channel kernel parameters

Info Channel Kernel Parameters

Quality

Type - The following settings are available with some of the most often-used channels defined.

* Info Channel			
Туре	Geometric normal		
Z-depth max UV max AO dist. Parallel samples Max. tile samples	Geometric normal Smooth normal Shading normal Tangent (local) normal Z depth Position Texture coordinate Texture tangent Motion vector Material ID Object layer ID Object layer color Baking group ID Light pass ID Render layer Moust Wireframe Ambient occlusion (AO) Opacity Roughness Index of refraction (IOR) Diffuse filter Reflection filter Transmission filter	ray tracing formal mapping backface hilighting t traffic hadows	X

Figure 2: The available Info Channel types

- Geometric Normals The vectors perpendicular to the mesh's triangle faces.
- **Smooth Normals** Shows information on the integrity of the model's geometry in terms of the normals perpendicular to the mesh's smooth underlying surface.
- **Shading Normals** The interpolated normals used for shading. This does not take into account the object's Bump map. The result is less faceted and smoother than Geometric Normals.
- **Tangent (Local) Normals** A color shows the Tangent (Local) Normal in tangent space at the position hit by the camera ray.
- **Z-depth** An image that's shaded based on the distance between the objects in the scene and the position of the rendering camera.
- **Position** A color-coded image that shows the position of the objects in the scene, often used in compositing to help position 3D-rendered images from different renders.
- **Texture Coordinates** A color-coded image showing a Gradient map based on the direction of the object's UV texture coordinates.
- **Texture Tangent** The first tangent vector. This determines the Normal map distortion's orientation.
- **Motion Vector** This renders the 2D motion vector in screen space. The X-coordinate shows pixels set in motion to the right (stored in the Red channel), while the Y-coordinate shows pixels in the up motion (stored in the Green channel).

- Material¹ ID Every material assigned in the scene is represented as a separate color.
- **Object Layer ID** A color-coded image, each object is colored based on their Object Layer ID settings. The Layer ID setting is found in the Octane Attributes section in the object's Shape node tab.
- **Object Layer Color** Shows the color specified in the Object Layer node.
- Baking Group ID Every Baking Group ID assigned in the scene is represented as a separate color.
- Light Pass ID Every Light Pass ID assigned in the scene is represented as a separate color.
- Render Layer ID A color-coded image, each object is colored based on their Object Layer ID settings. The Layer ID setting is found in the Octane Attributes section in the object's Shape node tab. For more information, see the Render Layers² topic in this manual.
- **Render Layer Mask** A mask that's rendered based on an object's Layer ID and render layer membership. For more information, see the Render Layers topic in this manual.
- Wireframe Triangles outlined in black represent the mesh.
- **Ambient Occlusion (AO)** A render that's shaded using ambient occlusion calculations. Recessed areas of the surfaces are shaded darker than their surroundings.
- **Opacity** An Opacity render mask that's based on the object's Opacity map.
- **Roughness** Based on the material roughness at the camera ray's hit point.
- Index Of Refraction (IOR) Based on the material Index Of Refraction at the camera ray's hit point.
- **Diffuse³ Filter** Shows the diffuse texture color of the scene's Diffuse and **Glossy⁴** materials.
- **Reflection Filter** Shows the reflection texture color of the scene's **Specular**⁵ and Glossy materials.
- **Refraction Filter** Shows the refraction texture color of the scene's Specular materials.
- **Transmission⁶ Filter** Shows the transmission texture color of the scene's Diffuse materials.

AO Distance - Specifies the Ambient Occlusion distance.

AO Alpha Shadows - Takes Opacity into account in the AO calculation, and render passes can use this to specify if OctaneRender[®] should render shadows cast by Ambient Occlusion as transparent (zero alpha). This is useful if the you want to composite the render over another image and don't want the AO shadows to be present.

¹The representation of the surface or volume properties of an object.

²Render layers allow users to separate their scene geometry into parts, where one part is meant to be visible and the rest of the other parts "capture" the side effects of the visible geometry. The layers allow different objects to be rendered into separate images where, in turn, some normal render passes may be applied. The Render layers are meant for compositing and not to hide parts of the scene.

³Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

⁴The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

⁵Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

⁶A surface characteristic that determines if light may pass through a surface volume.

Maximum Z-Depth¹ - Sets the maximum z-depth that OctaneRender shows.

UV Max - Sets the maximum value that OctaneRender shows for the Texture coordinates.

UV Coordinate Selection - Determines which set of UV coordinates to use.

Max Speed - Speed mapped to the maximum intensity in the motion vector channel. A value of 1 means a maximum movement of 1 screen width in the shutter interval.

Bump And Normal Mapping - Shows or hides the **Bump** and **Normal** maps.

Wireframe Backface Highlighting - Highlights backfaces in the Wireframe channel.

Sampling

Static Noise - If enabled, the noise patterns are kept stable between frames.

Parallel Samples - Controls how many samples OctaneRender calculates in parallel. Small values require less memory to store the sample's state, but rendering is slower. High values need more graphics memory, but rendering is faster. The change in performance depends on the scene, the **GPU**² architecture, and the number of shader processors in the GPU.

Maximum Tile Samples - Controls the number of samples per pixel to render until OctaneRender takes the result and stores it in the film buffer. High values generate results less often at the film buffer.

Minimize Net Traffic - Distributes the same tile to the net render nodes until it reaches the max samples/pixel for that tile, and then it distributes the next tile to render nodes. This option doesn't affect work done by local GPUs. This way, a render node can merge all of its results into the same cached tile until the Primary Render Node switches to a different tile.

Color

White Light Spectrum - Controls the appearance of colors produced by spectral emitters. This value determines the spectrum that will produce white in the final image. The D65 setting will produce a reasonable daylight color. The Legacy/Flat setting will preserve the appearance of legacy projects where the spectral emitters appear more blue.

Deep Image

Deep Image³ - Enables rendering deep pixel images used for deep image compositing.

³Renders frames with multiple depth samples in addition to typical color and opacity channels.

¹A measure of object distances from the camera typically represented as a grayscale image.

²The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Maximum Depth Samples - When you enable Deep Image, this sets the maximum number of depth samples per pixel.

Deep Render AOVs - Includes rendering AOVs in deep pixels.

Depth Tolerance - When you enable Deep Image rendering, this option merges depth samples with relative depth differences that fall below this tolerance value.

Adaptive Sampling

Adaptive Sampling¹ disables sampling for pixels that reach a specified noise threshold, which allows the **Kernel** to focus its processing on areas that still need refinement. You can find the Adaptive Sampling options in the attributes for the **Direct Light**, **Path Tracing**, and **Photon Tracing** kernels.

¹A method of sampling that determines if areas of a rendering require more sampling than other areas instead of sampling the entire rendering equally.

С	ommo	on	Kernel	Cam	era	Devic	es	Tools	Supp	oort	Aco	ount	R	ende	r El	ement
•	Ren	der Vie	ew Setti	ings												
•	Ren	der Se	ttings													
•	Ren	der La	yer													
•	Spec	cial Pa	sses set	up												
•	Pass	ses Ou	tpút													
•	Kerr	nel Typ	ie													
•	Dire	ct Ligh	it													
		Qualit	y													
		GI mo	de	An	nbient	Occlus	ic 🔻	Speci	ular dept	h		5		¢		
		Glossy depth			2		¢	Diffu	se depth			2		¢		
		Maxim	al overla	pping			¢	AO d	listance			3.0		¢		
		AO te>	ture					Т	уре		Non	e	•			
		Light														
		AI ligh	t					AI lic	jht updat	e						
	Light IDs Action					Disable	•									
		L.IDs:		е	1	2	3	4	5	6		7	8		9	
			10	11	12	13	14	15	16	17		.8	19		20	
		L. inv:		e	1	2	3	4	5	6		7	8		9	
			10	11	12	13	14	15	16	17		.8	19		20	
		Sampl	ina													
			ent ratio		0.0		¢	Static	noise							
			l samples	5	8		÷		tile samp	oles		16		¢		
			ze net tra				~									
		Adapt	ive samp	lina												
			ve samp					Noise	e thresho	Id		0.0	3			
			daptive samp		250	5	¢		p pixels	i di		2x2		•		
			ed expos		1.0		¢					E. ML				
		Color	light spec	trum												
		wince	iigiit spec	uum	Le	gacy/l •	4									
	Deep image															
	Deep image						render A									
		Max. d	epth sam	ples	8		¢	Dept	h toleran	се		0.0	5	¢		
	Toon shadow ambient															
	Compatibility mode					Latest (2022.1)					•					

295 — Render Setup

Figure 1: The Adaptive Sampling parameter of the Direct Light kernel

Adaptive Sampling Parameters

Adaptive Sampling - Stops sampling pixels that reach a specified noise threshold. This lets the kernel focus its processing on areas that still need refinement.

Min. Adaptive Samples - Specifies the minimum number of samples to calculate before Adaptive Sampling kicks in. The pixel's noise estimate has a large initial error. If you set the noise threshold to a high value, then you should set Min. Adaptive Samples to a high value to avoid artifacts.

Noise Threshold - When Adaptive Sampling is enabled, Noise Threshold specifies the smallest relative noise level. When a pixel's noise estimate is less than this value, OctaneRender[®] turns off sampling for this pixel. Good values are in the range of **0.01** - **0.03**. The default is **0.02**, which is pretty clean.

Group Pixels - When Adaptive Sampling is enabled, Group Pixels specifies the number of pixels that are handled together. If all pixels of a group reach the noise level, sampling stops for all of these pixels.

Expected Exposure - This parameter's value should be about the same value as the image exposure, otherwise set it to **0** (the default value) to ignore these settings. Adaptive Sampling uses this parameter to determine what pixels are bright and dark. This depends on the exposure setting in the Octane Imager. If the value is not **0**, Adaptive Sampling adjusts the noise estimate of very dark areas of the image. It also increases the **Min. Adaptive Samples** limit for very dark areas, because they tend to find paths to light sources irregularly, resulting in an over-optimistic noise estimate.

Camera

You can also access OctaneRender's camera settings from the **Camera** tab in the **Render Setup** window when no OctaneRender[®] cameras are present in the scene. These parameters provide camera controls for the active **Viewport**.

A detailed explanation can be found in the **Lights and Cameras > Camera** section of the documentation.

Common Kernel	Camera Devid	ces	Tools	Support	Account	Render Ele	ments
▼ Camera							
Aperture	0.0		Lens shift X		0.0		
Use F-Stop			Lens shi	ift Y	0.0		
F-Stop	2.8	\$	Ortho view shift		100.0	\$	
Aperture edge	1.0		Stereo o	output	Disabled	•	
Focus type	Autofocus	•	Stereo r	node	Off-axis	•	
Focal depth	10.0		Stereo c	listance	0.02	\$	
Near clip depth	0.0		Left filte	er 🕴			
Far clip depth	1000000000.0		Right fil	ter			
Distortion	0.0		Swap ey	/es			
Pixel aspect	1.0		Apertur	e aspect	1.0		
			Persp. c	orrection			
Motion Blur							
▶ Imager							
Post Processing							100
► Camera Tools							111

Figure 1: The Camera Tab from the Render Setup window

Devices

OctaneRender[®] is a **GPU**¹-based render engine. It is important to manage the GPUs in the system that are used for rendering. This is done from the **Devices** tab under **Render Setup**. Under this tab, the checkboxes for unsupported GPUs are not shown, and you can enable just the GPUs with a supported compute model.

Under this section you'll find:

- GPU Config
- Network Config

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

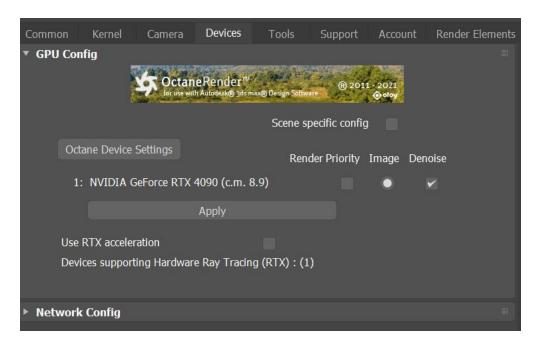


Figure 1: The Devices Tab from the Render Setup window

GPU Config

The **GPU¹ Config** allows you to select support GPU hardware(s) used for Octane.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Commo	n Kerne	el (Camera	Devices	Tools	Support	Account	Render Elen	nents
▼ GPU	Config Octane Dev	vice Set	for use wit	eRender ^{nø} 1 Autodeslo®) 3ds ma	Scene s	pecific config	⊙ otoy		
				4090 (c.m. 8 Apply		der Priority	Image Den	oise ✔	
	Use RTX acc Devices sup			e Ray Tracing	I (RTX) : (1)			
▶ Netv	vork Config	J							

Figure 1: GPU Config

GPU Config Parameters

Scene Specific Config - Setting will be specific for each scene file.

Render Priority - Sets this GPU as low priority

Image - Enables the specific GPU to be used for imaging.

Denoise - Enables the specific GPU to be used for denoising.

Use RTX Acceleration - Enable ray-tracing hardware.

Octane Device Settings

- **CUDA Driver** This shows the current CUDA® driver and runtime versions.
- **Render** Select GPUs to use for rendering if more than one GPU is installed.
- **Use Priority** This shows whether the device will use the priority indicated at the Render Viewport's Render Priority setting. The Use Priority option throttles down rendering on one or more GPUs to improve system responsiveness, especially when rendering on a GPU used for the display.
- Image Enables the specific GPU to be used for imaging.
- **Denoise** Enables the specific GPU to be used for denoising.
- **Device Info** Shows the selected device's specifications.
- **Device Memory Usage** This shows how the video card memory is allocated based on the current scene's geometry, textures, render target, etc.

- **GPU Headroom** Determines the amount of GPU memory to leave free on each graphics card when storing image textures or geometry data. VRAM is faster than RAM, therefore GPU Head Room tends to be set to a minimal level since it is practical to have the maximum amount of texture and geometry data fitted into VRAM.
- Use RTX Acceleration Enable ray-tracing hardware.

OctaneRender devices preferences										
– CUDA driver ———										
Driver version: 12.20										
 Available devices ——— 										
Device		Render	Use priority	Image	Denoise					
1: NVIDIA GeForce RTX 409	90 (compute model 8.9)			0						
- Device info										
Memory size: 23.99 GB		Run time lim	it: no							
Shader cores: 16384		Integrated:	no							
Multiprocessors: 128		PCI bus:devi	ce: 42:00							
Clock rate: 2.40 GHz		Driver mode	I: WDDM							
 Device memory usage — 										
Total available device memo	ry: 21959 MB									
Engine runtime data:	630.8 MB	Node	e system data:	1.1 KB						
Film buffer:	189.4 MB	Imag	ge textures:	4.0 MB						
Geometry:	1.9 MB	Den	oiser:	0 bytes						
Unavailable:	2.5 GB									
- All devices										
GPU headroom [MB]:		512			×					
Use RTX acceleration										
	a	ose			//					

Network Configuration

Network rendering lets you utilize additional GPUs in other computers to render images. Octane distributes compiled render data and not scene data, so no file management is required. It is similar to working with additional GPUs by allowing the distributed rendering of single images over multiple computers connected through a fast local area network. Network rendering requires a Primary Node and one or more Render Nodes on

different computers. The Octane instance that drives the rendering is the Primary Node, and the Octane instances that help are the Render Nodes.

Since an Octane Render Node requires an activated Standalone license, we recommend running Standalone first to activate a Standalone license on that computer. It is best to copy the whole folder of the released archive onto the Render Node computer. Make sure that the Primary Node and Render Node are not blocked by any firewalls in the network or operating system.

Primary Node, Render Nodes, And Daemons

The Standalone version or the octane.exe act as Primary Node and a special console version of Octane, octane_node.exe, can run on other computers as Render Nodes. They should all be on different computers, or they would have to share the same GPUs.

The Octane Primary Node does all the render data processing. The Render Node does not need to have a powerful CPU, but the Render Node needs enough RAM to store the render data plus some render results. The Render Node's operating systems can also be different since the communication between the machines is cross-platform. No data is stored on the Render Node's discs, it's all stored in memory.

Each time network rendering is required, the Render Node process has to launch on the Render Node machines. The Render Node daemon makes the control of the Render Nodes more practical, as it can launch at startup on each machine in the network. The daemon is the little program that starts a Render Node process on the machine on request by a Primary Node, monitors it, and stops it on request by a Primary Node. Monitoring means making sure that a running Render Node sends a regular heartbeat to the daemon, and if that doesn't happen, it first tries to stop the Render Node, and then it kills the process as a last resort if necessary. The daemon runs all the time, and starts/stops a Render Node process if a Primary Node requests it. The daemon also listens for the heartbeat of the Render Node to check if the Render Node process is still running. This Render Node daemon eliminates needing to launch the Render Node process manually on each computer each time rendering is required on the Render Node.

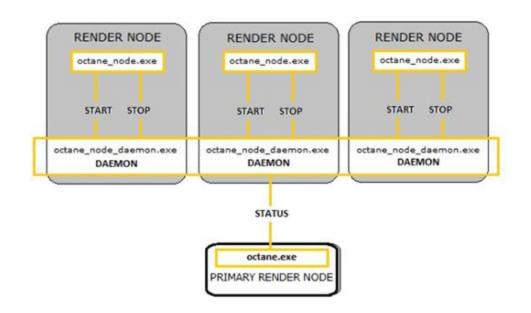


Figure 1: Diagram of the Octane network rendering process

Tools

Octane provides additional tools to deal with **Materials**¹, file Exports, and support for older versions of Octane. Here you will find:

- Live DB
- Material² Converter
- Octane Export
- Export Settings
- 1.9 Version Support
- Octane Preferences

 $^1\mbox{A}$ set of attributes or parameters that describe surface characteristics.

²The representation of the surface or volume properties of an object.

3 Render Setu	p: Oct	aneRender		-	_		\times
Target:	Produ	iction Rende	ring Mo	de 🔻			
Preset:				•		Render	
Renderer:	Octar	neRender		•	Save	File	
View to Render:	Quad	4 - Perspect	tive			Ŧ	ô
Common Kernel	Cam	era Device	s Too	ls Support	Account F	Render Eler	nents
* Live DB							
LocalDB directory		C:\Users\to	hen \Ap	pData\Roamin	ig\OctaneRe	nder \ocalD	
Imported texture	s patl	P:\Projects	(Amboc	cStudio\01_Ze	roOne\3D\m	ateriallibra	
Open LiveDE	3	Refresh Liv	/eDB	Explore Loc	alDB Expl	lore Textur	es
Material Con	verte	r					
* Octane expo	rt						
Animation		Start frame	0		End frame	100	
Standalone							
Export Location	ı	3dsN	lax use	r 'Export' folde	er 🔻	Explore.	
Preset Path							
Export as	.orb>						
Export							
Octane cloud							
							188
		Export		Stop			
* Export settir	igs						
Enable ABC Expo	rt		~	Export passe	es from Rend	ler Element	s 🗸
Enable temporary		ra for Export		Export passe			 -
Enable material a			~				
1.9 version s	ирро	rt					
Octane Prefe	erence	25					

Figure 1: The Tools Tab from the Render Setup window

Live DB

The 3DS Max[®] plugin has access to the OctaneRender[®] online Live DB, which is OctaneRender's asset database. It stores **Materials¹**, groups of **Nodes**, and whole scenes shared by the OctaneRender community and the OctaneRender team. The asset database makes it easier to move groups of Nodes, scenes, and assets across the OctaneRender plugins and the Standalone edition.

You can access the Live DB from the **Octane** menu (Figure 1), or by opening the **Render Setup** window, then clicking on the **Tools** tab and clicking on the **Open LiveDB** button (Figure 2).

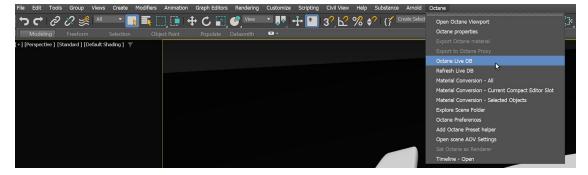


Figure 1: Accessing the Octane Live DB from the Octane menu

* Live DB							
LocalDB directory	AppData\Roaming\OctaneRender\JocalDb						
Imported textures patl	Documents\3ds Max	< 2021\materiallibrar	ies				
Open LiveDB	Refresh LiveDB	Explore LocalDB	Explore Textures				

Figure 2: Live DB

Many of the Materials contain **Texture** maps. 3ds Max cannot store these texture maps within a scene, so 3ds Max saves the texture maps to disk under a specified folder and adds the material name to the path. You can customize the path in **Imported Textures² Path** directory.

¹A set of attributes or parameters that describe surface characteristics.

²Textures are used to add details to a surface. Textures can be procedural or imported raster files.

To use a material in the Live DB, right-click on the **Material**¹ thumbnail and click **Import**.

Figure 3: Importing a Material

Live DB Parameters

LocalDB Directory - Select the **LocalDB** directory. This should match the directory set in **OctaneRender Standalone Preferences**. See options to move files in **Octane Preferences > Material** tab.

Imported Textures Path - Defines the folder to save the textures from LiveDB.

Open LiveDB - Open the **LiveDB** tool.

Refresh LiveDB - Manual refresh the content of the **LiveDB** tool.

Explore LocalDB - Open Windows Explorer to the **LocalDB** folder.

Explore Textures - Opens Windows Explorer to the **Imported Textures** folder.

Local DB

OctaneRender[®] includes a Local DB that houses **Materials²** and **Nodes**, similar to the Live DB. You can save these assets on a local drive and organize them in folders with thumbnails for easy identification. To access the Local DB, click on **Open LiveDB**, then proceed to the **LocalDB** tab.

¹The representation of the surface or volume properties of an object.

²A set of attributes or parameters that describe surface characteristics.

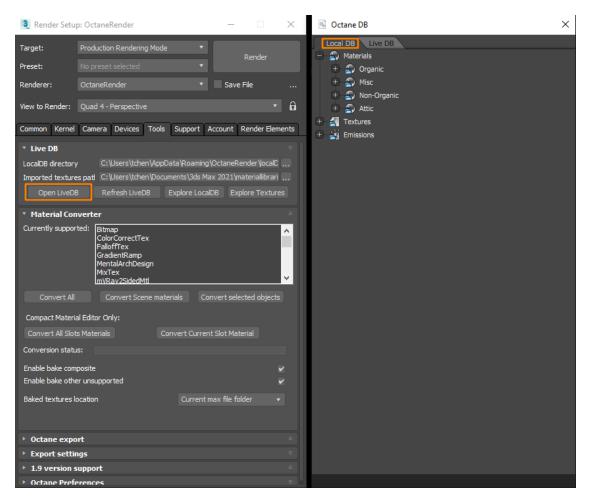


Figure 1: Local DB

Right-click and import to use a **Material**¹ or other Local DB asset.

¹The representation of the surface or volume properties of an object.

Figure 2: Importing Materials from the Local DB into 3DS Max[®]

Material Converter

In some situations, you'll need to convert **Materials¹** from other render engines into OctaneRender[®] Materials in order to render them in OctaneRender[®] for 3DS Max[®]. To accomplish this, go to the **Render Setup** window and click the **Tools** tab. Next, expand the **Material² Converter** rollout and click the **Convert All** button. OctaneRender[®] converts all **Object** types listed in the **Currently Supported** window.

¹A set of attributes or parameters that describe surface characteristics.
²The representation of the surface or volume properties of an object.

* Material Convert	er						
Currently supported:	Bitmap ColorCorrectTex FalloffTex GradientRamp MentalArchDesign MixTex mVRav2SidedMtl						
Convert All	Convert Scene r	naterials	Convert selected	objects			
Compact Material Edi	tor Only:						
Convert All Slots Mat	terials	Convert Current Slot Material					
Conversion status:							
Enable bake composit Enable bake other uns				¥ ¥			
Baked textures location	n	Cu	ırrent max file folder				

Figure 1: Material Conversion

Certain Objects, such as light sources, may need adjustments once the conversion process is complete.

Material Converter Parameters

Currently Supported - defines a supported list of object types that can be converted to OctaneRender[®].
Convert All - Convert all supported object types.
Convert Scene Materials - Convert only the current scene materials.
Convert Selected Objects - convert only the objects that are selected.
Convert All Slot Materials - Convert all materials in the Compact Material Editor's slots.
Convert Current Slot Material - Convert only the currently selected Compact Material Editor's slot.
Conversion Status - Shows the progress of the conversion.
Enable Bake Composite - Bake out textures from combined textures for OctaneRender[®].

Bake Textures¹ Location - Defines the directory to place the baked textures.

Octane Export

OctaneRender® creates packages containing macro nodes otherwise known as nodegraphs. **ORBX**² packages store all the geometry, materials, animation data, textures and everything else related to the scene into a single archive file. This feature replaces the older method of embedding images in .ocs files. Each .orbx package can then be stored locally or even uploaded to the OctaneLive Database as a shared resource for other Octane users to access. The .orbx file format can also be exported from applications such as Maya, Cinema 4D, or 3DS Max that have the Octane plugin installed and licensed. This makes it possible to move scenes and materials from host applications to Octane Standalone and the Octane Render Cloud.

Animation Start frame 0	
Standalone	
Export Location 3dsMax user 'Export' folder • Explore	
Preset Path P:\Projects\AmboccStudio\01_ZeroOne\3D\export	
Export as .orbx	
Export	
Octane cloud	
Export Stop	

Figure 1: Octane Export

¹Textures are used to add details to a surface. Textures can be procedural or imported raster files.

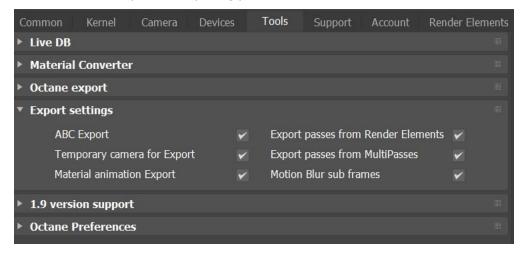
²The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Octane Export Parameters

Animation - Enables animation export.

Start Frame - Defines the first frame of the animation.

End Frame - Defines the last frame of the animation.


Standalone

- Export Location Defines the type of folder path for the export.
- **Preset Path** Show the folder path for the export
- **User Path** Show the user path for the export.
- Export as Defines the type of export. Currently only supports ORBX.
- **Export** Export the scene.

Octane Cloud - Allows you to export the scene to the Octane Cloud server (Requires log-in).

Export Settings

Provides additional option for exporting your **ORBX**¹ file.

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Figure 1: Export Settings

Export Setting Parameters

ABC Export - Enable saving an **Alembic**¹ file (.abc) while exporting to ORBX. Can be disabled with no animation to view details of geometry (export with animation always uses Alembic file).

Temporary Camera for Export - Enable post and pre export script to create a camera, when there is no active camera in the scene.

Material² Animation Export - Enable exporting all animated material values to ORBX.

Export Passes from Render Elements - Enable exporting Render Element passes.

Export Passes from MultiPasses - Enable exporting Multipass settings from OctaneRender Viewport.

Motion Blur³ Sub Frames - Export the animated sub frames, as set in Octane Object Property **Motion Blur Steps**.

1.9 Version Support

This section provides conversion support for older versions of OctaneRender[®].

¹An open format used to bake animated scenes for easy transfer between digital content creation tools.

²The representation of the surface or volume properties of an object.

³An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

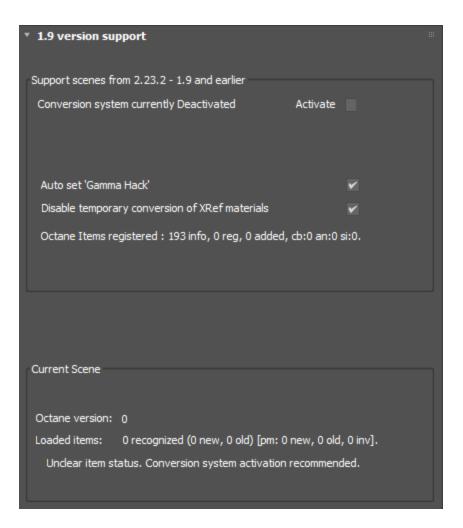


Figure 1: 1.9 Version Support

1.9 Version Support Parameters

Support Scenes from 2.23.2 - 1.9 and Earlier

• Activate - When deactivate, loading an old Max file will result in grey materials. Check in **Current** Scene box that old items are detected. You can then activate the conversion.

- Auto Set Gamma¹ Hack This will enable the 3DS Max Gamma Hack when old max files are loaded.
- **Disable temporary Conversion of XRef Materials**² XRef .max files with v1.9 materials must be converted separately. Enabling conversion may result in an unstable scene and is not recommended. However, it provides a way to have a quick look at what the fully converted scene will look like.

Current Scene - Scene Octane version statistics.

Octane Preferences

The **Octane Preferences** window provide behaviors when launching and running Octane for 3DS Max. You'll also find settings for dealing with common commercial plugins used for 3DS Max.

¹The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

²A set of attributes or parameters that describe surface characteristics.

Commo	n Kernel	Camera	Devices	Tools	Support	Account	Render Elem	ents
► Live	DB							
▶ Mate	rial Converter							
▶ Octar	ne export							
► Expo	rt settings							
► 1.9 v	ersion support	t						
 Octar 	ne Preference	s						
	Open Octa	ane Preferen	ces					
	Troubleshootin	g						
	Open O	CIO issue Re	esolver					
	Open Tim	neline issue f	Resolver					
	Explo	ore Scene Fo	lder					
	Explo	re Project Fo	older					
	Explor	re 3dsMax Fo	older					
	Explore	Octane Log	Folder					
	Explore Oct	ane Preferen	ces Folder					
	Open Log V	Vindow						
	Reset Octan	e Menu						

Figure 1: Octane Preferences

Octane Preference Parameters

Open Octane Preferences - Provides settings for the following:

- Main Settings
- Viewport
- Material¹
- Export
- Previous Versions

¹The representation of the surface or volume properties of an object.

- Vray, Corona, Standard
- Pflow, Standard
- Phoenix, Forest Pack, tyflow, Hair and Fur
- Troubleshooting
- Kernel Default
- User Interface

Troubleshooting

- Open OCIO Issue Resolver Opens the OCIO issue resolver dialog.
- Open Timeline Issue Resolver Opens the OCIO Timeline issue resolver dialog.
- **Explore Scene Folder** Opens Windows Explorer to the file folder.
- Explore Project Folder Opens Windows Explorer to the project folder.
- Explore 3DS Max Folder Opens Windows Explorer to the 3DS Max install folder.
- **Explore Octane Log Folder** Opens Windows Explorer to the Octane Log folder.
- Explore Octane Preferences Folder Opens Windows Explorer to the Octane Preference folder.
- **Open Log Window** Opens the Octane Log Viewer.
- Reset Octane Menu When changing Workspaces, your Octane Menu might disappear. This will reinstall the menu to the new workspace.

Support

Support provides Octane with instructions on handling geometry and common commercial plugins for 3DS Max. Under the Support tab are:

- Common Scene Collection Settings
- Forest Pack
- RailClone
- Standard Particles
- PFlow
- tyFlow
- Phoenix FD
- Ornatrix
- Hair & Fur

3 Render Setup: OctaneRe	ender			_		×
Target: Production I	Renderin	ng Mode	Ŧ			
Preset: No preset s					Render	
Renderer: OctaneRen				Sav	e File	
						-
View to Render: Quad 4 - Pe	erspectiv					• 6
Common Kernel Camera [Devices	Tools	Support	Account	Render Ele	ements
* Common Scene Collecti	ion Sett	tings				
Use Direct geometry handler		¥				
Use Direct particle		¥				
Keep empty geometry		¥				
Octane Scene Persistency		Keep All	nodes			
Generic Velocity scale		0.05				
* Forest Pack						
Forest Pack Support				Direct		
Refresh No Forest Pack plug	gin found	ł.				
Forest Pack User ID settings	-			None		
Use layer from FP object				~		
▼ RailClone						
RailClone Support				Direct		
 Standard Particles 						
Global Particle scale		1.0				
Particle Update type		Only if 'us	se render'			
* PFlow						
PFlow Support type		Direct				
PFlow Particle Velocity scale		100.0				
Override PFlow Render mode		¥				
Use PFlow Render mode pe	rcent	¥				
Discard PFlow Multi Mesh Motio	on Blur	~				
* TyFlow						
TyElaw particle IDe						

Figure 1: Support Tab from the Render Setup window Common Scene Collection Settings

Comm	on Kernel	Camera	Devices		Tools	Suppo	ort	Account	Render	Element
• Com	mon Scene Co	llection Set	tings							
11	Use Direct geom	etry handler		~						
	Use Direct partic	le		~						
	Keep empty geo	metry		~						
	Octane Scene Pe	ersistency		Кеер	All nodes		▼ A			
	Generic Velocity	scale		0.05	¢					
	VDB Preview file	e caching		From	start to c	urrent	•			
	VDB Preview cad	che location		Defa	ult sub fol	der	•			
	VDB Preview cad	che path								
	Broadcast Rende	er mode		Norm	ial (pre an	d post r	ende	er)	▼	
	Broadcast Frame	e mode		Norm	ial (pre an	d post f	irame	e render)	▼	
	Broadcast Pre Ev	val		Neve					•	
	Broadcast frame	change		Neve	r				▼	

Settings for handling Geometry.

Figure 1: Common Scene Collection Settings

Common Scene Collection Setting Parameters

Use Direct Geometry Handler - Use a new geometry handler. This creates Octane nodes matching closely 3DS Max geometry created by other plugins.

Use Direct Particle - Use particle geometry instances when possible instead of a single mesh for all particles.

Keep Empty Geometry - Always create Octane nodes for each 3DS Max node of the scene, even if no geometry is available on the first rendered frame. This is needed for some animated geometry. Note that this can be changed per object, in the Octane Geometry modifier.

Octane Scene Persistency - Select the types of Octane nodes to keep in memory. This avoid re-process nodes (e.g. texture compression), and makes the work flow faster (avoiding re compiling geometry that didn't change).

Generic Velocity Scale - When **Motion Blur¹** is used with vertex velocity from a map (**Velocity Channel ID**), velocity are scaled with this value.

VDB² Preview File Caching - Saves VDB preview point cloud data to disk.

VDB Preview Cache Location - Determines where the VDB preview file cache is saved.

VDB Preview Cache Path - Sets a custom path for the VDB preview file cache when **Use Defined Folder** is selected as the location type.

Broadcast Render Mode - Sends notifications to other plugins when rendering starts and ends which might be needed to update geometry.

Broadcast Frame Mode - Sends notifications to other plugins when rendering a frame starts and ends which might be needed to update geometry.

Broadcast Pre Eval - Sends notifications to other plugins on scene pre-evaluation which might be needed to update geometry.

Broadcast Frame Change - Sends notifications to other plugins on frame change which might be needed to update geometry.

Forest Pack

Settings for handling Forest Pack. An instance scattering tool from iToo Software.

* Forest Pack		
Forest Pack Support	Direct	
Refresh No Forest Pack plugin found.		
Forest Pack User ID settings	None	
Use layer from FP object	¥	

Figure 1: Forest Pack

¹An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

²Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

Forest Pack Parameters

Forest Pack Support - Support Forest Pack object types.

- Direct Can render both instances and mesh render type (as set in FP Display / Render / Mode: 'Automatic' or 'Meshes').
- **Legacy** Support for older versions.
- Standard Can render only 'Meshes' mode.
- **Discard** Discard support.

Refresh - Detects if the Forest Pack plugin was installed.

Forest Pack User ID Settings - How to set the Octane User IDs from Forest Pack instances.

User Layer from FP Object - Use layer settings from Forest Pack object (Octane properties), instead of from instance object(s) properties.

RailClone

Settings for RailClone parametric object creation tools from iToo Software.

▼ RailClone		
RailClone Support	Direct	

RailClone Parameters

RailClone Support - Support RailClone Object types.

- **Direct** Can render both instances and mesh render type.
- Standard Can render only 'Meshes' mode.
- **Discard** Discard support.

Standard Particles

Settings for 3DS Max non-event driven standard particle system.

Figure 1: Standard Particles

Standard Particle Parameters

Global Particle Scale - For use with the 'Extended Geometry' render mode in object properties.

Particle Update Type - Defines how to perform a particle update on frame changes.

PFlow

Settings for 3DS Max event driven Particle Flow system.

* PFlow			
PFlow Support type	Direct		
PFlow Particle Velocity scale	100.0		
Override PFlow Render mode	×		
Use PFlow Render mode percent	✓		
Discard PFlow Multi Mesh Motion Blur	¥		

Figure 1: PFlow

PFlow Parameters

PFlow Support Type - Support PFlow object types.

- **Direct** Can render both instances and mesh render type.
- **Legacy** Support for older versions.
- **Standard** Can render only 'Meshes' mode.
- **Discard** Discard support.

PFlow Particle Velocity Scale - For Motion Blur¹ effect.

Override PFlow Render Mode - When disabled, uses the Render mode VS Viewport mode setting from the Kernel tab ('Notify object on render'). When enabled, uses the mode for all PFlow objects as set in 'Use PFlow Render mode percent'.

¹An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

• Use PFlow Render Mode Percent - Use the corresponding percent of particles, as set in PF Source Quantity Multiplier.

Discard PFlow Multi Mesh Motion Blur - Avoid multiple evaluations using particle velocity if available.

tyFlow

An event driven particle simulation plugin suite for 3DS Max by Tyson Ibele.

* TyFlow		
TyFlow particle IDs	None	•
Create default particle object	✓	
Use particle node's mesh		
Use only standard particle		
tySplines always dynamic	✓	

Figure 1: tyFlow

tyFlow Parameters

tyFlow Particle IDs - Applies to tyFlow particle simulators without an Octane Geometry Modifier.

Create Default Particle Object - If a tyFlow particle doesn't use a geometry (e.g. sprite), it creates and uses a dummy sphere instead. This allows the system to see the generated particles by adding shapes if needed.

Use Particle Node's Mesh - Use both the particles and the mesh of tyFlow's node. This should be used only for some special tyFlow objects.

Use Only Standard Particle - Use only standard particle interface. Can be used for some particle graph when no Shape or Mesh are set. However, it is preferable to add Shape and Mesh to fully use tyFlow particle interface. Note that the scene must be re-loaded for the change to take effect.

tySplines Always Dynamic - Force tySplines object to be dynamic (Movable Proxy¹).

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

Phoenix FD

An all-in-one solution for fluid dynamics.

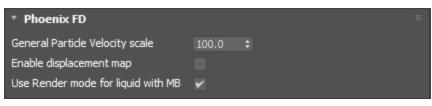
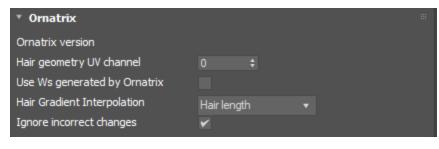


Figure 1: Phoenix FD

Phoenix FD Parameters


General Particle Velocity Scale - Scale motion blur intensity.

Enable Displacement¹ Map - Toggle use of displacement maps on or off.

Use Render Mode for Liquid with MB - Use Render Mode for liquid simulator object when **Motion Blur**² is enabled. This will override 'Notify objects on render' in kernel setting and 'Use render mode' in object properties.

Ornatrix

A hair, fur, and feather creation plugin with hair physics. Created by Ephere Inc.

¹The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

²An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject. Figure 1: Ornatrix

Ornatrix Parameters

Hair Geometry UV Channel - UV channel generated by Ornatrix.

Use Ws Generated by Ornatrix - When the 'W coordinate' map is set as an input of a gradient texture for hair material, this will use Ornatrix generated Ws instead of automatic Ws.

Hair Gradient Interpolation - When using automatic Ws (generated by Octane), this specifies how the hair segment W coordinates are calculated from the gradient texture.

Ignore Incorrect Changes - Workaround to avoid repeated Viewport updates when some Ornatrix objects are selected.

Hair & Fur

A 3DS Max Modifier for creating hair and fur.

Figure 1: Hair & Fur

Hair & Fur Parameters

Hair and Fur Auto Render Mode - Automatically change Hair and Fur Effect render mode settings to supported mode ('Geometry').

Hair and Fur Unsupported Render Mode Warning - Display a warning if Hair and Fur Effect render mode setting is not supported (currently only 'Geometry' or 'Buffer' are supported).

Account

OctaneRender[®] requires authentication with its designated license key and requires internet access on its initial launch. OctaneRender[®] requests your OTOY[®] credentials and attempts to retrieve an available license from the OctaneRender LiveTM server. Under the Account tab, you will find:

OctaneLive Account

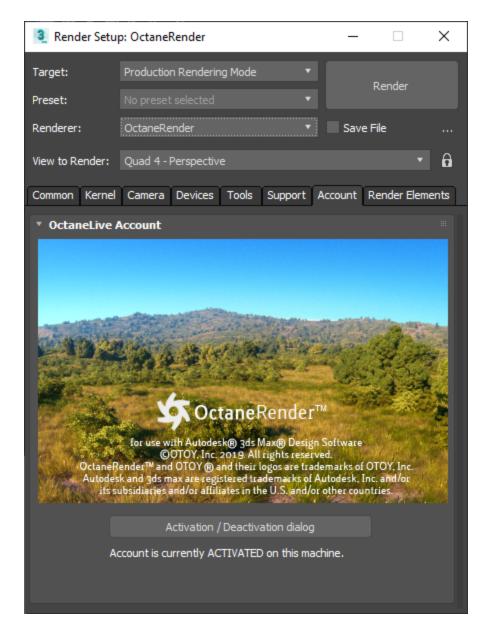


Figure 1: Account Tab and OctaneLive Account from the Render Setup window

OctaneRender[®] requires one available Standalone license on OctaneRender LiveTM, while plugins require one available standalone license plus one available license for that specific plugin. Standalone licenses are bound to

one machine, which means you can share the Standalone license across multiple plugins running on that machine. You can also run multiple instances of Standalone or a plugin on a single machine using the same license.

Closing the application releases the OctaneRender[®] license, similar to a floating license scheme. Standalone edition just releases the standalone license, while plugins release both Standalone and their respective license. In either case, licenses are released if there is not another instance of Standalone or a plugin making use of that specific license. Note the distinctions below between just closing the applications and signing out of the applications.

Standalone Edition

- Exiting Or Closing The Application
 - Releases the Standalone license key, except when there is a plugin edition that is also open and still bound to that Standalone license key.
- Signing Out
 - Releases all OctaneRender® license keys bound on that machine. If other OctaneRender® instances are still running, you will be asked to close them before it can sign out and release all of the licenses.

Plugin Edition

- Exiting Or Closing The Application
 - Releases the license keys bound to the plugin. This includes the Standalone license Key, unless the Standalone edition is open or other plugins are open and their keys are still bound to the same Standalone license key on the same machine.
- Signing Out
 - Releases all OctaneRender® license keys bound on that machine. If there are other instances of OctaneRender® still running, you will be asked to exit those before it can sign out and release all OctaneRender® licenses.

Deactivating from the Octane live licenses administration page is not necessary as this is done automatically by the application. This lets you use OctaneRender® somewhere else without deactivating any licenses. Licenses in use by older versions have the Deactivate button next to them if you need to release the license.

If the application didn't close properly from a crash or other circumstances, there is a chance the license isn't released. If the same machine accesses the same keys, this is not a problem as the same keys are still bound. The problem arises when you use OctaneRender® on another machine, as the keys are still bound to the previous machine. In such cases, failsafe web deactivation unbinds the keys.

OctaneLive Account Parameter

Activation / Deactivation Dialog - Opens an Activation Status window to allow you to either activate or deactivate an account. If activating, an additional sign-in window will appear.

Render Elements

Render elements/passes are processed differently by different render engines. Since OctaneRender[®] is a separate render engine, it also uses its own set of render elements that are documented in the **Render AOVs** section of this manual. The **Render Elements** tab in the **Render Setup** window can still be utilized for creating AOVs, however, they cannot be accessed in the **Slate Material¹ Editor** window for compositing.

Using The Passes

To view and save render passes, go to **Rendering** > **Render Setup** > **Render Elements** and add the passes to include in the render.

¹The representation of the surface or volume properties of an object.

3 Render Setu	p: OctaneRender		×	Render Elements		?	×
Target:	Production Rendering Mode			AOV: AOV Output			^
Preset:		Render		Beauty pass: Diffuse Beauty pass: Diffuse direct Beauty pass: Diffuse filter			
Renderer:	OctaneRender 🔹	Save File		Beauty pass: Diffuse indirect Beauty pass: Emmiters			
View to Render:	Quad 4 - Perspective		6	Beauty pass: Environment Beauty pass: Irradience Beauty pass: Light Direction			П
Common Kernel	Camera Devices Tools Support Ac	count Render Eler	ments	Beauty pass: Noise Beauty pass: Reflection Beauty pass: Reflection direct			
* Render Elem	ents			Beauty pass: Reflection filter Beauty pass: Reflection filter Beauty pass: Reflection indirect			
	ements Active 🖌 Display Elements			Beauty pass: Refraction Beauty pass: Refraction Beauty pass: Refraction filter			
	Merge Delete			Beauty pass: Shadow Beauty pass: Shadow Beauty pass: Subsurface scattering			
Nam	e Enabled Filter Type	Ou		Beauty pass: Jubsurace scattering Beauty pass: Transmission Beauty pass: Transmission filter			
				Beauty pass: Volume			
				Beauty pass: Volume Emission Beauty pass: Volume Mask			
				Beauty pass: Volume Z Depth Back Beauty pass: Volume Z Depth Front			~
					ОК	Cance	I
< Selec	ted Element Parameters	>					
	Enable Enable Filtering						
Nam							
Outp	ut to CombustionTM						
	Enable						
	Create Combustion Workspace No						

Figure 1: Accessing the OctaneRender[®] Render Elements

Make sure that the selected passes are enabled.

Common	Kernel Camera De	vices To	ools Su	pport Account I	Render Elements
▼ Rende	r Elements				
Kenue			N	t -	
	 Elements Active 		Display Ele	ements	
	Add Merge	D	elete		
	Name	Enabled	Filter	Туре	Ou
	Diffuse	On	Off	Beauty pass:	
	Emmiters	On	Off	Beauty pass:	
	Environment	On	Off	Beauty pass:	
	Reflection	On	Off	Beauty pass:	
	Refraction	On	Off	Beauty pass:	
	Shadow	On	Off	Beauty pass:	
	Subsurface scat	On	Off	Beauty pass:	
	Transmission	On	Off	Beauty pass:	
	Volume	On	Off	Beauty pass:	
	<				>
	Selected Element Pa				
	🖌 Enable	E	Enable Filt	tering	_
	Name: Diffuse				
	Output to Combusti	onTM			
	Enable				
		_	_		
	Creat	te Combus	tion Worl	kspace Now	

Figure 2: Enabling the Render Elements

Go back to the **Kernel** window and make sure to enable the **Alpha Channel**.

🔝 Render Set	der Setup: OctaneRender 2023.1 - 14.03 – 🗆 🗙								
Target:	Production Rer	dering Mode		•		and an			
Preset:	No preset selected 🔹					tender			
Renderer:	OctaneRender	2023.1 - 14.0	3	•	Save File				
View to Render:	Quad 4 - Persp		-	ô					
Common K	ernel Camer	a Devices		Tools Suppor	t Account	Render Ele	ments		
Render View	w Settings								
Render Sett	tings								
Render Lay	er								
Special Pase	ses setup								
Passes Outp	out								
Kernel Type	2								
Kernel t	уре	Path Tracing	J		-				
Max. sa	mples	200		Alpha channel					
Filter si	ze	1.5		Alpha shadow		~			
Ray eps	silon	1.0		Keep environm	ient				
Path ter	m. power	0.3		Irradiance					
Opacity	threshold	1.0		Nested dielectr	ics	✓			
Max sul	odivision	10							
Show	w error log								
▶ Path Tracin	g						н		

Figure 3: Activating the Alpha Channel¹ parameter in the Kernel settings

Next, open OctaneRender Viewport and use the Select Multiple Passes button to Import passes selection from Render Elements (figure 4). You can also add or subtract other render passes to the viewport here. Keep in mind for file output renders, you need to make sure you export your passes back to Render Setup > Render Elements. This can be done with the Export Passes Selection to Render Elements.

¹A greyscale image used to determine which areas of a texture map are opaque and which areas are transparent.

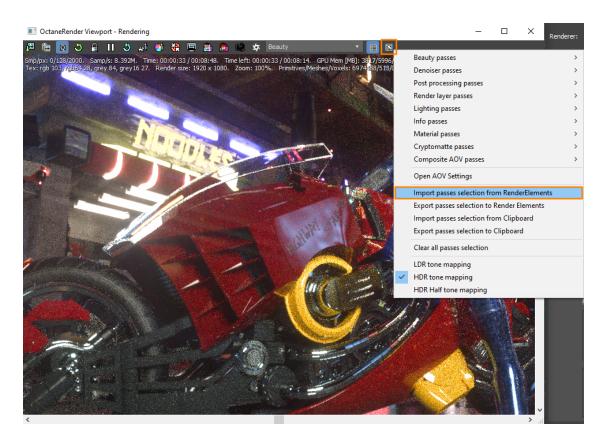


Figure 4: Import Render Elements via the OctaneRender Viewport

Use the **Passes Dropbox** to select and view each render pass. If you want to save out each pass manually, you can use the **Port To Max Framebuffer** button.

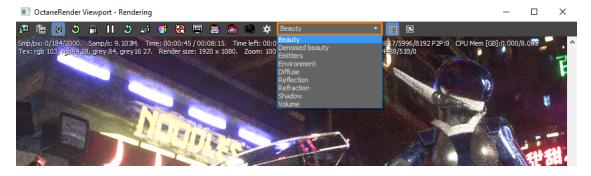


Figure 5: Passes Dropbox used to view each pass

Rendering And Effects

Additional rendering tools are explained in this section to help you control settings related to:

- Object Visibility
- Batch Rendering¹
- Rendering for VR²
- Texture Baking³
- **Deep Image**⁴ Rendering
- Render Layers⁵

Effects include a large range of features and tools. The OctaneRender[®] for 3DS Max[®] plugin include tools for:

- Post Processing⁶ Effects
- Hair and Fur
- Displacement⁷
- Instancing⁸
- Octane Proxy⁹
- Motion Blur¹⁰

⁴Renders frames with multiple depth samples in addition to typical color and opacity channels.

⁵Render layers allow users to separate their scene geometry into parts, where one part is meant to be visible and the rest of the other parts "capture" the side effects of the visible geometry. The layers allow different objects to be rendered into separate images where, in turn, some normal render passes may be applied. The Render layers are meant for compositing and not to hide parts of the scene.

⁶Effects such as Bloom and Glare that are applied after a scene has been rendered.

⁷The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

⁸Instancing an object means taking a single imported mesh object, such as an OBJ or an FBX and making multiple copies, each of which can be placed in different parts of the scene. This saves an enormous amount of computational resources because only a single object is loaded into the scene.

¹The process of assigning sequential portions of frames to be rendered across multiple systems.

²Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

³A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

- **ORBX**¹ Proxy
- Octane Vectron

Effects

Effects include a large range of features and tools. The OctaneRender[®] for 3ds Max[®] plugin categorizes **Volume** mediums, hair and fur, instancing, and motion blur as effects components.

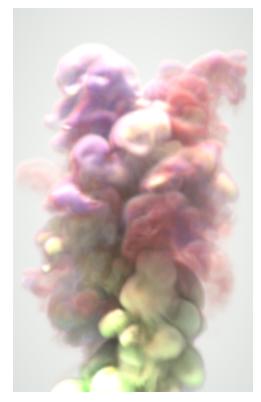


Figure 1: Volume Effect

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Figure 2: Instances and Scattering¹

Post-Processing Effects

The **Post-Processing** provides lens effects to help mimic a real camera. Shown below are the **Post-Processing** parameters under the **Render Setup** window, but similar settings are found under the **Modify** Panel of **Octane Camera** and **Universal Camera**.

¹Defines how fast light gets scattered when traveling through the medium.

🔝 Render Setu	ip: Oct	aneRender	2 <mark>023.1</mark> - 14	1.03				\times
Target:	Produ	ction Render	ring Mode		•	D	ender	
Preset:		eset selected			•	R	ender	
Renderer:	Octan	eRender 202	23.1 - 14.03		T	Save File		
View to Render:	Quad	4 - Perspect	ive					• 6
Common Ke	rnel	Camera	Devices	Tools	Support	Account	Render I	Elements
▶ Camera								
Motion Blur								
▶ Imager								
Post Process	ing							
Enabled								
Cutoff				Glare	rays			
Bloom po	ower			Glare	blur			
Glare pov	wer				ad start			
Glare ang					ad end			
Chromati					tral shift			
Vol. effec	ts				tral intensity			
				Lens				
				Lens	flare ext.			
▶ Camera Too	ls							

Figure 1: Render Setup window

Post-Processing Parameters

Enable - Enable post-processing effects. Post-processing is disabled by default.

Figure 3: No post-processing

Cutoff - Set the threshold for the effect.

Bloom Power - Controls the size of the emitter's glow and the size of the sun's or concentrated light's halo on reflective **Glossy¹** materials.

Figure 4: Bloom Power

Glare Power - Controls the size of the emitter's visible rays and the glare from reflective Glossy materials.

¹The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

Figure 5: Glow and Glare Power

Glare Rays - Controls the number of radiated or reflected visible rays.

Glare Angle - Adjusts the glare direction relative to the **Object**.

Glare Blur - Controls the glare's sharpness. Smaller values result in a crisp linear glare, and larger values with result in a softer glare.

Figure 6: Glare Blur

Chromatic Aberration - Controls the intensity of the color fringingon the edges of objects.

Volume Effects - Allows for a Post Volume Effects node to be added. See the Post Processing¹ Effects article for more details.

 $^{{}^{1}\!}$ Effects such as Bloom and Glare that are applied after a scene has been rendered.

Spread Start/End - The minimum and maximum blur radius as a proportion of the image width and height (whichever is larger).

Spectral Shift - Adjusts the spectrum displacement as the source's emitted light frequency changes. The shift is evident by a color change, similar to the doppler effect.

Spectral Intensity - Adjusts the intensity distribution of the rays across a source, affecting the radiant energy's brightness.

Spectral Shift - Adjusts the spectrum's displacement as the soure's emitted light frequency changes. The shift is evident by a color change, similar to the Doppler effect, as the distance traveled by the ray from its source increases or decreases.

Lens Flare - Determines the intensity of the lens flare.

Lens Flare Extent - Controls the overall length and distance between the lens flare highlights.

Figure 7: Glow, Glare, and Spectral

Volume Mediums

The best way to work with **Volumes** in 3ds Max[®] is to use **VDB**¹ files. VDB is a generic volume format used to create effects such as smoke, fog, vapor, and similar gaseous objects. VDBs are generated and exported from other 3D software packages such as Houdini[®]. VDB files are available for download online at www.open-vdb.org/download. VDBs can be a single frame or an animated file sequence.

¹Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

To use a VDB in OctaneRender[®] for 3ds Max, add an **Octane Volume** to the scene. You can find OctaneRender Volumes by clicking on the **Octane** sub-menu and going to the **Create** panel.

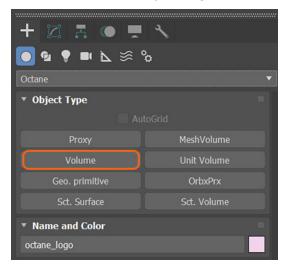


Figure 1: Accessing the Volume from the Create panel

After you add a Volume to the scene, you can import a VDB file into the File parameter of the Volume.

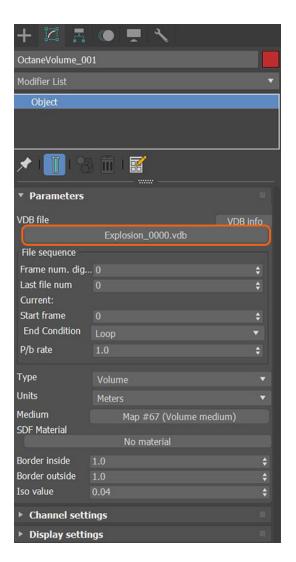


Figure 2: Adding a VDB file to the Volume

In order to gain maximum control over the Volume's look, add a Volume medium to the OctaneRender[®] Volume's **Medium** parameter. You can find the Volume medium in the **Slate Material¹ Editor** under the OctaneRender[®] **Maps** category.

¹The representation of the surface or volume properties of an object.

Slate Material Editor Modes Material Edit Select View Options Tools		- 0	× + 🖾 🖁 🔍 🗮 🔨
Modes Material Edit Select View Options Tools	Jantes *		OctaneVolume_001
			Modifier List
Search by Name		Map #67	Object
+ Fields		 Octane Medium Parameters 	
+ Geometric		Density 100.0	
+ Image		Volume step length 0.554	🔒 🔰 🖈 🛄 🖓 🟛 । 🚟 👘
+ Mapping		Vol. shadow ray st 4.0	Parameters
+ Materials		Use Vol. step lengt 🖌	
- Medium		Single scatter amo 1.0	VDB file VDB info Explosion 0000.vdb
+ Utility		Sample position di None	
Absorption		Absorption Color	
Medium switch		Absorption ramp No map	Last file num 0 \$
Random walk		Invert absorption	Current: Start frame 0 +
Scattering		Scattering Color	
📉 Schlick	Map #67 —	Scattering ramp No map	
Std Volume medium	Volume medium	Phase No map	
Volume medium	Sample position displaceme	Emission No map	Units Meters
	Absorption		Medium Map #67 (Volume medium)
+ Operators	absorptionRamp		SDF Material
+ Output AOVs	Scattering		No material
+ Procedural	scatteringRamp		Border inside 1.0
+ Projection	phase emission		Iso value 0.04
+ Render settings	emission emissionRamp		▶ Channel settings
+ Texture layers	emissionkamp		► Display settings
+ Transforms			
+ Utility			
+ Wrappers			
+ wrappers			
S Gaussian spectrum			
OSL Texture			
RGBSpectrum Texture			
		182 % 🔻 🍓 🔎 💭 🏹	18 m

Figure 3: Adding a Volume medium to the Octane Volume's Medium parameter

The Volume medium parameters are covered in more detail in the **Volume Medium¹** topic under the **Mater**ials² section in this manual.

Octane Volume Parameters

VDB File - Select a VDB file to import.
Frame Number Digits - Number of digits of the VDB file.
Last Frame Number - Specifies the last file number to use for the sequence.
Start Frame - The timeline frame matching the first file of the sequence.
End Condition - Sequence loop mode.
P/b Rate - Playback rate. A value of 1 means one file per frame.
Type - Defines your VDB file as either Volume or Volume SDF.

¹A shading system designed to render volumes such as smoke and fog.

²A set of attributes or parameters that describe surface characteristics.

Units - Controls the scale of an imported VDB volume.

Medium - Connects a Volume medium to control the Volume's look.

SDF Material - Provides support for surface material rendering on Volumes.

Border Inside - The amount of voxels that will be generated inside the surface.

Border Outside - The amount of voxels that will be generated outside the surface.

Iso Value - Value used when converting between fog volumes and level sets.

Absorption¹, **Emission**, **Scatter**, **Velocity Scale** - These parameters act as multipliers for the corresponding parameters in a Volume medium.

Channel Setup - Accepts any attached data from the imported VDB file.

Dummy Box Size - Determines the size of the Octane Volume placeholder visible in the scene.

Note: OctaneRender for 3ds Max also provides support for PhoenixFD volumes. You must add the Octane Volume modifier on top of the PhoenixFD object in the Modifier stack.

Hair And Fur

OctaneRender[®] for 3ds Max[®] can render the 3ds Max-native **Hair And Fur** modifier. The hair renders when the OctaneRender material is applied to the underlying **Object**.

¹Defines how fast light is absorbed while passing through a medium.

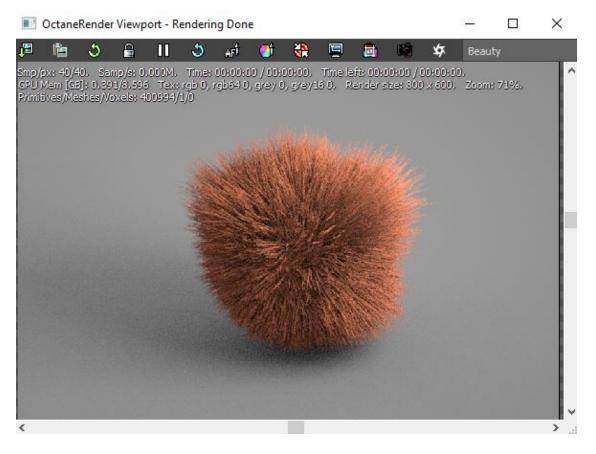


Figure 1: The Hair And Fur modifier applied to a sphere with an orange-colored Diffuse material¹

At first, it appears as one big **Mesh**, similar to what we would get if we convert this Object to a Mesh from the Hair And Fur's **Tools** section.

To get the best results with rendering hair and fur in OctaneRender, we recommend converting Hair And Fur to a Mesh.

¹Used for dull, non-reflecting materials or mesh emitters.

Hizi Sphere001 Modifier List Hair and Fur (WSM) Sphere	
Selection	
* Tools	
Recomb From Splines Spline Deform: None Reset Rest Regrow Hair Presets: Load Save Hairdo: Copy Paste Instance Node: None X Merge Material Convert: Guides -> Splines	
Hair -> Splines Hair -> Mesh Render Settings	

344 — Rendering And Effects

Figure 2: Converting Hair And Fur to a Mesh

Converting hair to a Mesh lets you apply a **Mapping** texture to the hair or fur. This is done by connecting the Mapping texture to the **Diffuse¹** slot of the **Material²** applied to the Mesh. The converted Hair mesh object then takes on the pattern or appearance of the mapped texture, like an **RGB** image texture or a **Sine Wave** texture.

You can also use a **Gradient** texture for the **Diffuse** slot of an OctaneRender material. However, you have to generate the Hair geometry with a third-party plugin other than the 3DS Max[®] Hair And Fur modifier. Using a third-party plugin with the ability to set custom Ws is necessary. Deploying in such a way lets you use the OctaneRender **Gradient** texture with a **W Coordinate** texture, and connect the W Coordinate to the Gradient texture's **Input** slot. This orients the Gradient across the length of the hair strands. You can find more information about the W Coordinate in the **"W Coordinate" on page 169** topic in this manual under the Texture Modifiers section.

Note: OctaneRender for 3ds Max also supports third-party hair plugins, which provide easier access to modeling hair and fur, like Ornatrix[®] and Hair Farm, and Forest Pack[®] for grass rendering.

Displacement

Displacement³(Texture Displacement) mapping utilizes a **2D** texture map to generate 3D surface relief. As opposed to **Bump** and **Normal** mapping, Displacement mapping provides the illusion of depth, and it displaces the actual geometric position of points over the textured surface.

Displacement mapping is covered in more detail under the **Material⁴ Editor** > **Textures⁵** section in this manual.

⁴The representation of the surface or volume properties of an object.

⁵Textures are used to add details to a surface. Textures can be procedural or imported raster files.

¹Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

²The representation of the surface or volume properties of an object.

³The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

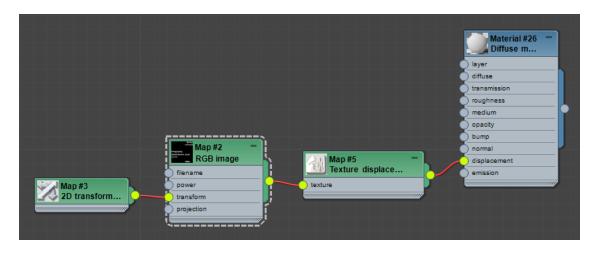


Figure 1: Displacement(Texture Displacement) mapping chain

Instancing

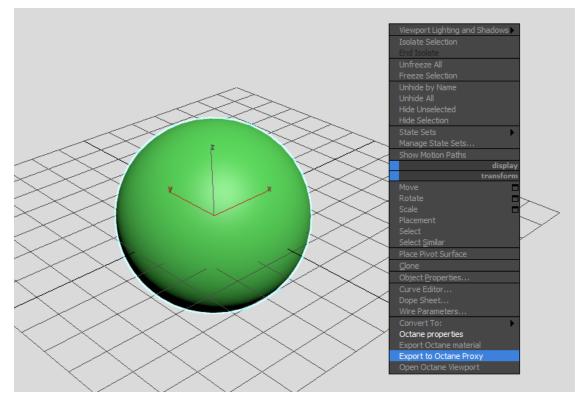
OctaneRender[®] supports two types of geometry:

Regular - This is the default geometry type for all Objects in a scene.

Instancing¹ Geometry (Movable Proxy²) - If the scene contains several Objects with the same geometry, OctaneRender[®] keeps one copy in memory and uses it as reference for the other copies. The renderer reduces memory consumption in exchange for rendering speed. Instancing allows OctaneRender[®] to transform geometry in real-time without geometry recalculation, which is useful when creating animations.

You can change the geometry type from the **Octane Object Properties** window.

¹Instancing an object means taking a single imported mesh object, such as an OBJ or an FBX and making multiple copies, each of which can be placed in different parts of the scene. This saves an enormous amount of computational resources because only a single object is loaded into the scene.


²An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

Octane object properties	×
octane_logo	Movable proxy 🗸
floor_floor OctanePreset_001	Vertex motion blur
OctaneLight_001	Object motion blur
OctaneLight_002 OctaneLight_003	Motion blur steps 2
ostanozg.n_ooo	(info: Kernel Motion blur is disabled.)
	Object layer ID 2
	Baking group ID 1
	Dirt visibility 🖌
	Curvature visibility 🖌
	Object Layer Helper
	Velocity channel ID 0
	User Instance ID -1 💠
	start 0 \Leftrightarrow end 1 \Leftrightarrow
	Instance Obj: (none)
	se123456789
	10 11 12 13 14 15 16 17 18 19 20
	Custom AOV Custom AOV 1 V
	Custom AOV chan. All
	Hide
	Renderable 🗸
	Visible to Camera 🖌
	Visibility 1.0 💠
1 Selected 🖌 🧹 a	auto syni

Figure 1: Changing the geometry type to a Movable Proxy in order to create instances

Octane Proxy

An **Octane Proxy¹** is an **Object** saved as a separate file for reuse in larger scenes. This minimizes any additions to the scene's total polygon count, especially if the scene requires the same Object to appear several times. When used with instancing in 3DS Max[®], Octane Proxies help keep large scenes from reaching polygon limits, and they also keep the relative file size of the main project file manageable.

To start using an Octane Proxy, create the Object, then export it with the Octane Proxy Exporter.

Figure 1: Creating an Octane Proxy from the Quad menu

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

2	Octane Proxy Exporter
Proxy path	C:\Users\abby.breukers\Documents\3dsMax\export
Preview details	1000 ‡
Animation export	Frames from 0 💠 to 100 🗘
Replace original	
Update view	
Current frame dura	ation: 0.033333 sec = 160 ticks (30.00 FPS)
Fetching time scale	1.0 🗘
Auto replay duration	on 🗹 Replay frame duration 160 🛟
Fetching 101 frame	es, at 30.00 FPS
Export	Cancel
Export	

Figure 2: The Octane Proxy export options

An Octane Proxy is saved as an OCTPRX file inside the specified path's folder. After creating the Octane Proxy, you can use it in the main scene.

Figure 3: Creating an Octane Proxy

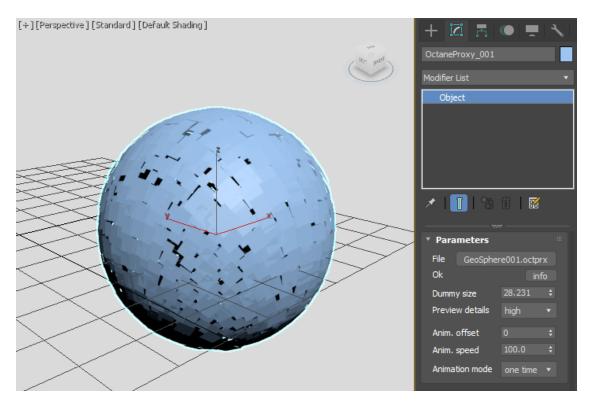


Figure 4: Loading an Octane Proxy back into the scene

From this point, you can instance the Octane Proxy. Make sure the Octane Proxy is set up as a movable proxy by right-clicking on it to open the **Octane Properties** dialog box and select **Movable Proxy**. You can now clone the Object as instances without increasing its footprint in **GPU**¹ memory.

Motion Blur

You can activate **Motion Blur²** from the **Render Setup** window. **Motion Blur Duration** is measured by frame duration. A value of **1.0** means Motion Blur Duration is equal to the frame duration.

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process. ²An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

Common Kernel Camera	Devices	Tools	Support Account	Render Elements
Camera				
* Motion Blur				
Motion blur			Shutter time	100.0 \$
Motion blur duration 1.0			Subframe start	0.0 \$
Shutter alignment After			Subframe end	100.0 \$
▶ Imager				
Post Processing				
* Camera Tools				
Copy parameters	to			
Paste parameters	from			

Figure 1: Accessing the Motion Blur settings in the Render Setup window

Every **Object** with motion blur should enable **Object Motion Blur** in its **Octane Properties**.

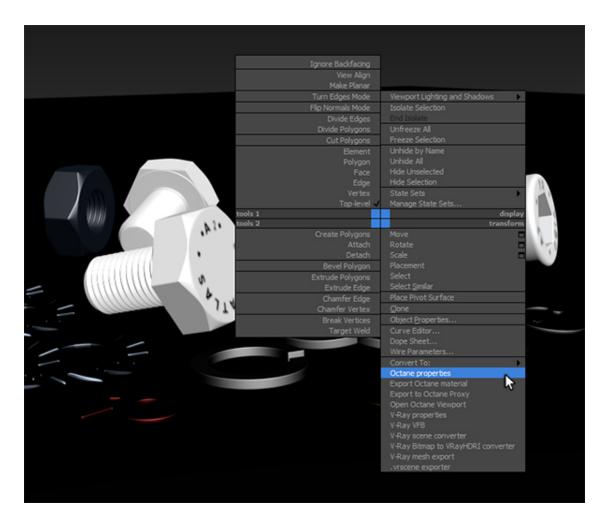


Figure 2: Accessing the Octane Object Properties by right-clicking on a scene Object

Octane object properties	×
octane_logo	Movable proxy 🖌
floor_floor OctanePreset 001	Vertex motion blur
OctaneLight_001	Object motion blur
OctaneLight_002 OctaneLight_003	Motion blur steps 2 💠
	(info: Kernel Motion blur is disabled.)
	Object layer ID 2
	Baking group ID 1 💠
	Dirt visibility 🖌
	Curvature visibility 🖌
	Object Layer Helper
	Velocity channel ID 0
	User Instance ID -1 💠
	start 0 \Leftrightarrow end 1 \Leftrightarrow
	Instance Obj: (none)
	s e 1 2 3 4 5 6 7 8 9
	10 11 12 13 14 15 16 17 18 19 20
	Custom AOV Custom AOV 1 🔻
	Custom AOV chan. All
	Hide
	Renderable 🗸
	Visible to Camera 🖌
	Visibility 1.0 💠
1 Selected 🗸 🗸	auto syni

Figure 3: Activating motion blur from the Octane Object Properties window

If an Object doesn't have any deformation animation, you should enable **Movable Proxy¹** and **Object Motion Blur**. If you have fast curved Objects moving, increase the Motion Blur steps.

¹An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

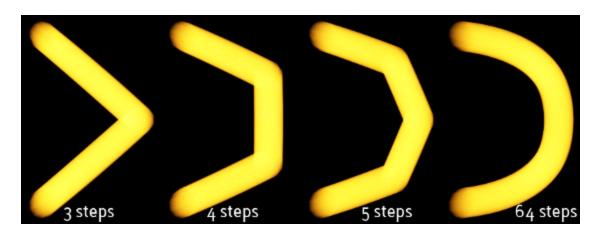


Figure 4: Motion Blur steps comparison

For Object deformation animation, you should enable **Movable Proxy** and **Vertex Motion Blur**. Vertex Motion Blur ignores Motion Blur steps, and always uses **2** steps. This is a render engine limitation.

ORBX Proxy

The **ORBX¹ Proxy²** object lets you load the ORBX[®] file format into a 3DS Max[®] scene. ORBX files can carry full scene data from other sources such as OctaneRender[®] Standalone, or other Digital Content Creation applications like Maya[®], Houdini[®], or Cinema 4D[®]. You can access the ORBX Proxy object from the **Octane** subcategory by clicking on the **Create** tab in the **Command** Panel. The ORBX Proxy shows up in the Viewports as an empty box, but once you open the Render Viewport, the entire ORBX scene renders.

¹The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

²An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

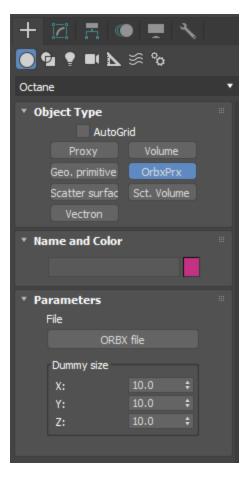


Figure 1: Accessing the ORBX Proxy from the Command Panel

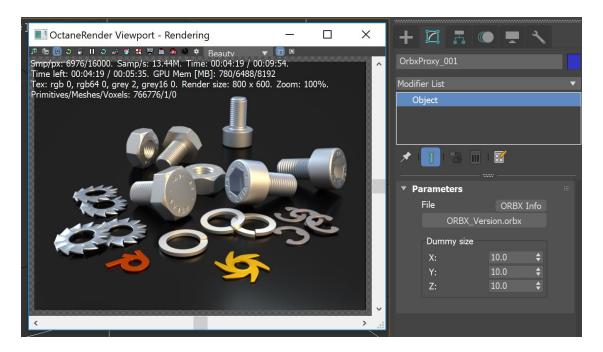


Figure 2: A rendered ORBX Proxy

Vectron

Vectron objects create geometry using the OSL language. Octane Vectron (Vector-Polygon) is a procedural primitive, providing infinite procedurally-generated scenes, **Volumes**, and geometry that bypass **Meshes** and Volumes.

Vectron has a zero-memory footprint, driving increased efficiencies when compared to Meshes or Volumes generated on CPUs. This enables Vectron to provide procedurally-generated scenes on the **GPU**¹ without using VRAM. Vectron provides tools in an artist's workflow and helps render triangle-free geometry ny using OctaneRender's built-in OSL support and OSL texture shaders.

Procedural Primitives using **OSL** (**Open Shader Language**²) vector geometry nodes let you create complex shapes, surfaces, **Volumes**, warps, operators, and effects. By vectorizing **Meshes** and Volumes into **Vec**-

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process. ²A shading language developed by Sony Pictures Imageworks. There are multiple render engines that utilize OSL as it is particularly suited for physically-based renderers.

tron objects, you can manipulate Vectron nodes in revolutionary new ways. Examples include: spheres, strands, sound waves, infinite planes, liquids, clouds, oceans, flow field, and more.

Geometric Operators allow the **Procedural** OSL geometry node graphs workflow to follow the same structure as OSL texture node graphs with 4D mixing, blending, and boundary operator nodes for skinning, metaballs, and procedural resurfacing. Finally, boolean operations are also enabled in Octane Vectron.

Vectron objects are accessible from the **Create** tab in the **Command** panel under the **Octane Vectron** subcategory.

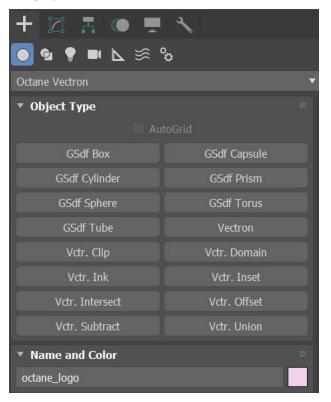


Figure 1: Accessing the Vectron object from the Command panel

Rendering

Additional rendering tools are explained in this section to help you control settings related to:

- Object Visibility
- Batch Rendering¹
- Rendering for VR^2
- Texture Baking³
- **Deep Image**⁴ Rendering
- Render Layers⁵

Object Visibility

OctaneRender[®] supports three object visibility properties for **Mesh** object visibility. You can find these by right-clicking on a scene **Object** and selecting **Object Properties** from the **Quad** menu.

Object Visibility Parameters

Visibility - Setting the value to **0** makes the Object invisible. Setting the value to **1** makes the Object visible.

Visible To Camera - When disabled, the Object casts a shadow, but the Object's surface is invisible to the camera.

Cast Shadows - When disabled, the Object won't cast a shadow, but the Object's surface is visible to the camera.

¹The process of assigning sequential portions of frames to be rendered across multiple systems.

²Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

³A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

⁴Renders frames with multiple depth samples in addition to typical color and opacity channels.

⁵Render layers allow users to separate their scene geometry into parts, where one part is meant to be visible and the rest of the other parts "capture" the side effects of the visible geometry. The layers allow different objects to be rendered into separate images where, in turn, some normal render passes may be applied. The Render layers are meant for compositing and not to hide parts of the scene.

Object Properties	? ×
General Adv. Lighting User Defined	
Object Information	
Name: Box001	
Dimensions: X: <u>44.849</u> Material N Y: <u>39.263</u> Layer: Z: 23.908	lame: <u>None</u> 0 (default)
Vertices: 8 Parent:	Scene Root
Faces: 12 Num. Chil	
0In Group/	Assembly: None
Interactivity	Rendering Control
Hide	Visibility: 1.0 By Object
Freeze	✓ Renderable
Display Properties	✓ Inherit Visibility
	Visible to Camera
See-Through By Object Display as Box	 Visible to Reflection/Refraction Receive Shadows
Backface Cull	Cast Shadows
 Edges Only 	Apply Atmospherics
Vertex Ticks	Render Occluded Objects
Motion Pat	G-Buffer
Ignore Extents	Object ID: 0 \$
Show Frozen in Gray	
Never Degrade	Motion Blur
Vertex Channel Display	
Vertex Color Shaded	Multiplier: 1.0 By Object
Map Channel: 1 🛟	✓ Enabled
	🔍 None 📃 Object 📃 Image
	OK Cancel

Figure 1: The three object visibility parameters

_		
	Viewport Lighting and SI	nadows 🕨
	Isolate Selection	
	Unfreeze All	
	Freeze Selection	
	Unhide by Name	
	Unhide All	
	Hide Unselected	
	Hide Selection	
	State Sets	•
	Manage State Sets	
		display
		transform
	Move	
	Rotate	
	Scale	
	Placement	
	Select	
	Select <u>S</u> imilar	
	<u>C</u> lone	
	Object Properties	
	Curve Editor	
	Dope Sheet	
	Wire Parameters	
	Convert To:	•
	Octane properties	
	Export Octane material	
	Export to Octane Proxy	
	Open Octane Viewport	

Figure 2: The Quad menu

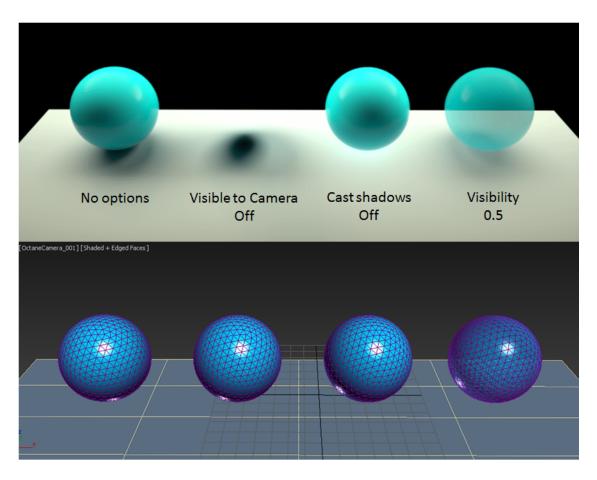


Figure 3: Comparison of object visibility options

Batch Rendering

OctaneRender[®] can render in batches with the 3ds Max[®] **Batch Render** mode. To do this, ensure that the scene in 3ds Max is set up and ready for rendering.

Rendering Via Batch Render

To perform a batch render, go to the **3ds Max** menu and click **Rendering**, then click on **Batch Render** and add the views and their respective parameters. If you're using a scene state and a render preset for the scene, you should specify those as well. You can also override the preset frames for each batch.

Figure 1: Selecting the Batch Render option

When batch rendering, 3ds Max uses the sequence of batches in the dialog.

For example:

Batch Reno	ler				x
<u>A</u> dd	<u>D</u> uplicate	Deļete			
Name		Camera	Output Path	Range	F
View01 View02 View03		OctaneCam OctaneCam OctaneCam	earth_test earth_test earth_test		e e e
	ш				Þ
Frame S W	idth: 640	= н	e End: 21 eight: 480 spect: 1.0	*	
Name	e: View01		- 18 M. 18		
Output Path	15	th_test_w_anin	mated_thinlenscar	n_3a.av	ŝ
ä	Camera:	octaneCamera_0	01	0	-
Scen	e State: <mark>-</mark>			······································	•
	Preset:			······································	•
	🔲 Net Rer	nder <u>E</u> xport to		<u>R</u> ender	

Figure 2: Selecting batches to render

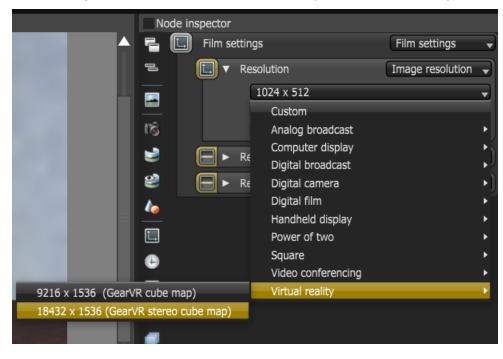
The .bat resulting from the above looks like this:

```
@echo off
rem -----
rem -- View01
echo Rendering Batch: View01
```

Octane for 3DS Max Plugin Manual

```
3dsmaxcmd ^
C:Usersuser1Documents3dsMaxscenestestsEarth test w animated cam.max ^
-batchRender:View01 -outputName View01 -camera OctaneCamera 001 ^
-start 0 -end 21 -nthFrame 1 -width 640 -height 480 -pixelAspect 1
rem _____
rem -- View02
echo Rendering Batch: View02
3dsmaxcmd ^
C:Usersuser1Documents3dsMaxscenestestsEarth test w animated cam.max ^
-batchRender:View02 -outputName View02 -camera OctaneCamera 001 ^
-start 21 -end 80 -nthFrame 1 -width 640 -height 480 -pixelAspect 1
rem ------
rem -- View03
echo Rendering Batch: View03
3dsmaxcmd ^
C:Usersuser1Documents3dsMaxscenestestsEarth test w animated cam.max ^
-batchRender:View03 -outputName View03 -camera OctaneCamera 001 ^
-start 81 -end 100 -nthFrame 1 -width 640 -height 480 -pixelAspect 1
```

Canceling A Batch Render


When you run a batch (View01) from this sequence, it invokes the render engine to render that batch to completion. Batch rendering in 3DS Max[®] is like a shortcut for running each batch (C:\Users\user1\Documents\3dsMaxscenes...) as a script from the command line, where you are required to provide an argument for each script to specify which scene file to render, among other things. Unlike the command line, where you can press **CTRL-C** on a script while it's rendering, canceling a batch render in the 3DS Max[®] GUI only applies for not rendering the rest of the batches in the sequence (View02, View03). The render

engine continues rendering the current batch (View01) until it's finished, then it pauses 3DS Max[®]. You have to wait until 3DS Max[®] finishes the job, then return 3DS Max[®] to a usable state.

After submitting a batch, 3DS Max[®] cannot provide any interactivity for that batch from that point, so before running a script in Batch Mode, make sure that the scene is prepared.

Rendering For VR

You can do stereo rendering in the plugins if you are familiar with the values (map type, resolution) that are compatible for VR^1 . The camera used for this is a stereoscopic panoramic camera with a **Cube Map** projection of equal sides (+x,-x,+y,-y,+z,-z).

The advantage of the Standalone Edition is that is has presets for VR rendering:

Figure 1: VR rendering presets

¹Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

In all cases, it is just like rendering a 2D image in OctaneRender[®] as a 360x180 panorama. When you are happy with how the panorama looks, it is time to set the scene up for VR.

- 1. Make sure that the units are set to **Meters**. It's best not to change the system unit of an existing scene, but since OctaneRender's default units are in meters, make sure these values are the values that would be equivalent to the units used in the scene. (e.g., 3ds Max[®] 1 cm = OctaneRender .01 m). If possible, change the system unit value before you import or create geometry.
- 2. VR scenes are huge. You can temporarily set up the scene with a normal spherical panoramic camera at a low resolution (like 1024×512) so that you can preview the scene and add more textures at optimum performance.

+ 🖾 🖪	• 📮 🔧
OctaneCamera_00)1
Modifier List	
Object	
objett	
🗡 I 🚺 I 🗞	1
• Camera	
Camera type	Spherical 💌
Target mode	
T. distance	51.016 \$
FOV	60.0 \$
FOV Y	60.0 \$
	0.0 \$
Use F-Stop	
F-Stop	2.8 🗘
Apert. edge	1.0 \$
Distortion	0.0 \$
Focus type	Autcus 🔻
Focal depth	1.0 \$
Stereo	Noreo 🔻
Mode	Off-axis 🔻
Stereo dist.	0.02 \$
St. dist. falloff	1.0 \$
Left filter	
Right filter	
Swap eyes	
Lens shift X	0.0 \$
Y	0.0 \$
Near clip depth	0.0 \$

Figure 2: Setting up the spherical panoramic camera

Common Kernel	Camera	Devices	Tools	Support	Account	Render Ele	ements
▶ Camera							
Motion Blur							
▶ Imager							
* Post Processi	ng						
Enabled							
Cutoff	0.0			Glare	rays		
Bloom power	1.0			Glare	blur	0.001	
Glare power	0.1			Spectr	al shift	0.0	
Glare angle	15.0						
Spectral intensity	0.0						
Camera Tools							

3. Turn off **Post Processing¹** in **Render Setup**.

Figure 3: Disabling post-processing

- 4. Make sure that the **Objects** in the view are 10x the stereo offset distance.
- 5. Keep the **Camera** upright from the Camera **Modify** Panel.

Figure 4: Enabling the Keep Upright checkbox

6. Make sure that lighting is as realistic as possible - try to using the **Path Tracing** or **PMC** kernels.

¹Effects such as Bloom and Glare that are applied after a scene has been rendered.

- 7. When you are satisfied with how the scene looks, you can proceed to create the final quality render, which is the 18K cube map render. While you're in the **Camera** parameters, make sure to set the camera type to **Cube Map**, and then choose a **Stereo** mode (used side-by-side).
- 8. Save the resulting image as an 8-bit PNG.
- 9. Click Render.
- 10. The resulting image should be an 18K cube map, which you can upload into the VR viewer folder of the device that is compatible with GearVR.

Figure 6: The final result

Texture Baking

The **Texture Baking¹** system extracts lighting information from a mesh's surface by using its **UV** map to generate a texture that can map back to the **Mesh** later on.

In OctaneRender[®], texture baking is implemented as a special type of camera that, in contrast to the **Thin Lens** and **Panoramic** cameras, has one position and direction per sample. The way these are calculated depends on the input UV geometry and the actual geometry being baked.

For each sample, the camera calculates the geometry position and normal, then it generates a ray that points towards it using the same direction as the normal, from a distance of the configured kernel's ray epsilon. Once calculated, OctaneRender[®] traces the ray in the same way as other camera types.

¹A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

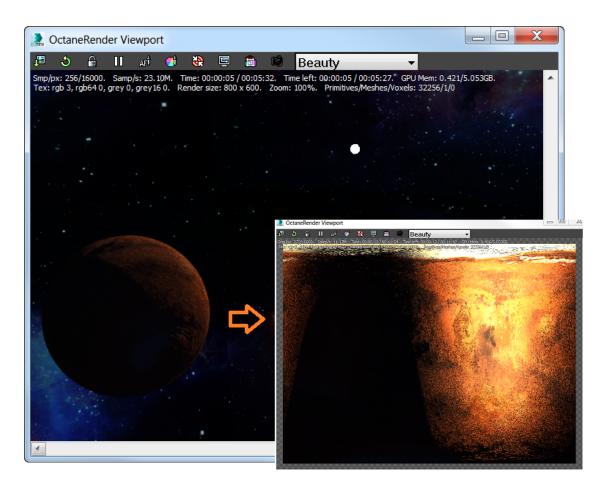


Figure 1: Texture baking sample

Mesh Pre-Requirements

In order to use a **Mesh** for texture baking, the Mesh should contain at least one UV set. In the case of **Alembic**¹, you can use up to three sets. You should not map different geometry primitives to the same UV region otherwise, you may find artifacts due to overlapping geometry.

¹An open format used to bake animated scenes for easy transfer between digital content creation tools.

Getting Started

Assuming you've already created a scene that contains geometry, lighting, material information, etc., the easiest way to get started is to create a copy of your render camera and replace its **Camera Type** with a **Baking** camera.

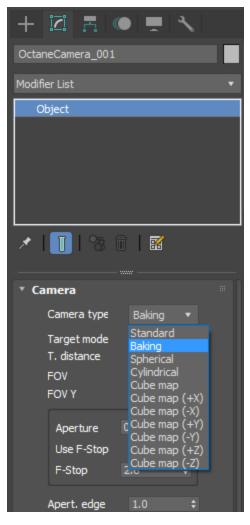


Figure 2: Selecting the Baking camera

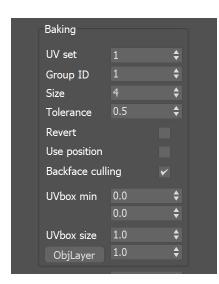


Figure 3: Baking parameters from Camera

Make sure your camera Baking Group ID is the same as the **Octane Object Properties** Baking Group ID.

Octane object properties	;	×				
Box001	Movable proxy					
Box001	Vertex motion blur					
	Object motion blur					
	Motion blur steps 2 \$					
	(info: Kernel Motion blur is disabled.)					
	Object layer ID 1 ‡					
	Baking group ID 1 ‡					
	Dirt visibility 🔽					
	Object Layer Helper					
	Velocity channel ID 0 💠					
	User Instance ID -1 💠					
	start 0					
	Instance Obj: (none)					
	se 1234567	8				
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~				
	Hide					
	Renderable 🖌					
	Visible to Camera					
	Visibility 1.0 ‡					
	Cast Shadows 🖌 🖌					
1 Selected 🖌	auto syn					

Figure 4: Octane object properties

Baking Parameters

UV Set - Determines the UV set to use for Baking.

Group ID - Specifies the baking group to bake. By default, all objects belong to baking group number **1**. You can arrange new baking groups by making use of Object layers or **Object Layer** maps, similar to the way render layers work.

Size - Specifies the number of pixels added to the UV map edges.

Tolerance - Specifies the tolerance for keeping or discarding edge noise.

Revert - Flips the camera directions when enabled.

Use Position - If you use a baking position, OctaneRender[®] traces camera rays from the specified coordinates in world space instead of using the Mesh surface as reference. This is useful when you bake within position-dependent artifacts such as the ones produced by **Glossy** or **Specular** materials.

In order to tell the Baking camera what geometry to bake, select the proper Baking Group ID in the Baking camera.

You can use render layers, passes, imager settings, etc. the same way as with other types of cameras, which allow you to extract lighting and material information.

Backface Culling - Determines if back-facing geometry will be included in the baking.

UVbox Min/Size - Specifies the area that the Baking camera takes into account. You can pan and zoom in and out of the camera in case your UV geometry is not within the **0,0** - **1,1** region.

Obj. Layer - Creates or edits an **Object Layer Helper** object in the scene. When using a Baking camera, this lets you edit the Baking transform matrix.

Baking Tips

Set your Kernel's **Filter** size to **1.0**. Since baking doesn't need much anti-aliasing, this bakes more precise data.

Set the **Imager** response to **Linear/Off** to disable specific camera response curves.

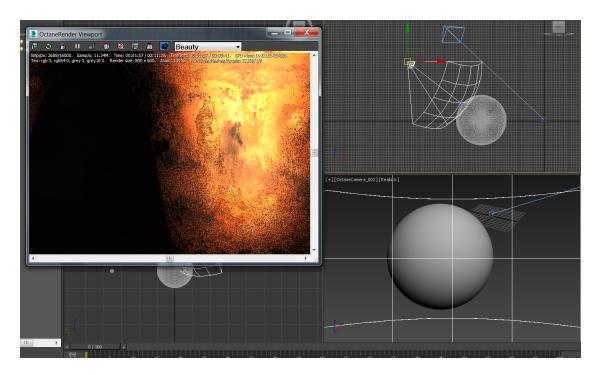


Figure 5: A texture baking sample in the OctaneRender Viewport

Deep Image Rendering

Deep Image¹ rendering improves the compositing workflow by storing Z-depth with samples. It works best in scenarios where traditional compositing fails, like masking out overlapping **Objects**, working with **Images** that have depth-of-field or motion blur, or compositing footage in rendered **Volumes**.

Most major compositing applications now support Deep Image rendering. The disadvantage of Deep Image rendering is the large amounts of memory it requires to render and store deep images.

The standard output format is OpenEXR.

Enabling Deep Image Rendering

You can enable Deep Image rendering by going to the **Render Setup** window, clicking on the **Kernel** tab, then selecting the **Deep Image** checkbox . Deep Image rendering works with the **Path Tracing** and **Direct**

¹Renders frames with multiple depth samples in addition to typical color and opacity channels.

Octane for 3DS Max Plugin Manual

Lighting kernels.

Comm	non Kernel Came	era Devices	Т	ools	Support	Account	Render	Elements
► Rer	nder View Settings							
► Rer	nder Settings							
► Rer	nder Layer							
► Spe	ecial Passes setup							
► Pas	ses Output							
► Ker	nel Type							
• Pat	th Tracing							
- 9	Quality							
	Diffuse depth			Specular	depth	16	¢	
	Scatter depth	8		Maximal	overlapping	j 4	¢	
	Caustic blur	0.0		GI clamp)	1000	000. 🗢	
	Light							
	AI light			AI light (update			
	Light IDs Action	Disable 🕨	-					
	L.IDs: s e	1 2			5 6			
	10 11	12 13	14	15	16 17	18	19 2	0
	L. inv: s e	1 2		4	5 6		8	
	10 11	12 13	14	15	16 17	18	19 2	0
	Sampling							
	Coherent ratio	0.0	¢	Static no	ise			
	Parallel samples			Max. tile	samples	16		
	Minimize net traffic		~					
	Adaptive sampling							
	Adaptive sampling			Noise thr	reshold	0.03	÷	
	Min. adaptive samples	256	¢	Group pi		2x2	•	
	Expected exposure	1.0	\$					
	C-1							
	Color White light spectrum	Langert						
	write light spectrum	Legacy/i 🔻						
	Deep image							
	Deep image				der AOVs			
	Max. depth samples			Depth to	lerance	0.05	¢	
	Toon shadow ambient							
	Compatibility mode	Latest (2	2022.1			•		

Figure 1: Deep Image parameters in the Path Tracing kernel tab

Deep Image Parameters

Deep Image - Enables rendering deep pixel images used for deep image compositing.

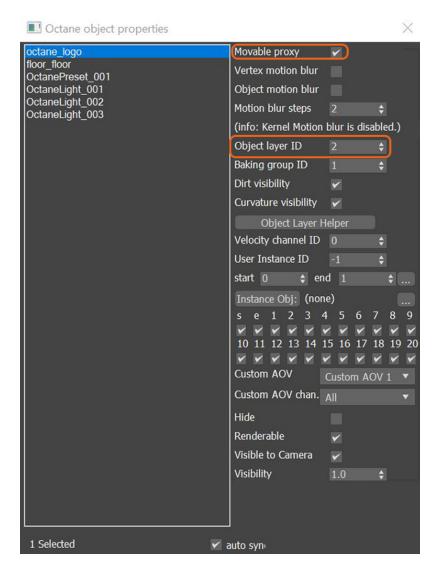
Maximum Depth Samples - When you enable Deep Image, this sets the maximum number of depth samples per pixel.

Deep Render AOVs - Includes rendering AOVs in deep pixels.

Depth Tolerance - When you enable Deep Image rendering, this option merges depth samples with relative depth differences that fall below this tolerance value.

For a typical scene, the **GPU**¹ renders thousands of samples per pixel. However, VRAM is limited, so it's necessary to manage the number of samples stored with the Deep **Render Passes**² and Max. Depth Samples parameters.

Render Layers


Render layers separate scene geometry into parts, where one part is meant to be visible and the other parts capture the side effects of the visible geometry. The layers allow different **Objects** to render into separate images where you can apply render passes. The render layers are meant for compositing, not hiding parts of the scene.

To set up a scene for rendering in layers, assign an **Octane Layer ID** for the scene's objects, and set the object geometry type to be **Movable Proxy³** (Figure 1). You can find this option by right-clicking on the object in the **Viewport** and selecting **Octane Properties** from the **Quad** menu (Figure 2).

¹The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

²Render passes allow a rendered frame to be further broken down beyond the capabilities of Render Layers. Render Passes vary among render engines but typically they allow an image to be separated into its fundamental visual components such as diffuse, ambient, specular, etc..

³An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

Figure 1: Assigning Object Layer IDs and Movable Proxy in the Octane Object Properties window

	Viewport Lighting and Shadows	
	Isolate Selection	
	End Isolate	
	Unfreeze All	
	Freeze Selection	
View Align	Unhide by Name	
Make Planar	Unhide All	
Turn Edges Mode	Hide Unselected	
Flip Normals Mode	Hide Selection	
Divide Edges	State Sets	
Divide Polygons	Manage State Sets	
Cut Polygons	Show Motion Paths	
tools 1 tools 2	display transform	
	Move	
Create Polygons Attach	Rotate	
Detach	Scale	
Bevel Polygon	Placement	
Extrude Polygons	Select	
Extrade r orygons Extrude Edge	Select Similar	
Chamfer Edge	Place Pivot Surface	
Chamfer Vertex	Clone	
Break Vertices	Object Properties	
Target Weld	Curve Editor	
	Dope Sheet	
	Wire Parameters	
	Convert To:	
	Octane properties	
	Export Octane material 😽	
	Export to Octane Proxy	
	Open Octane Viewport	

Figure 2: Accessing the Octane Properties by right-clicking on the Object in the Viewport

Finally, enable the **Render Layers¹** feature in **Render Setup** from the **Kernel** tab. If the Object Layer IDs are set up for each object, OctaneRender[®] can render separate passes for those objects that share an ID.

¹Render layers allow users to separate their scene geometry into parts, where one part is meant to be visible and the rest of the other parts "capture" the side effects of the visible geometry. The layers allow different objects to be rendered into separate images where, in turn, some normal render passes may be applied. The Render layers are meant for compositing and not to hide parts of the scene.

Render Setup: OctaneRender 2023.1 - 14.03							\times
Target:	Production Rendering Mode			Da	nder		
Preset:			•	Re	nuer		
Renderer:	OctaneRender 2023.1 - 14.03			•	Save File		
View to Render: Quad 4 - Perspective						•	Ô
Common Ke	ernel Camera	Devices	Tools	Support	Account	Render Ele	ments
▶ Render View Settings							
▶ Render Settings							
▼ Render Layer							
Enable	~						
Active layer ID							
Invert							
Visibility mode		Normal			V		
Special Passes setup							
▶ Passes Output							
▶ Kernel Type							
▶ Path Tracing							

Figure 3: Enabling the Render Layers feature from the Render Setup window

The main beauty pass renders the Object IDs that correspond to the **Active Layer ID**, and cuts out everything else. You can also choose to invert everything by toggling **Invert** in the **Render Layer** rollout.

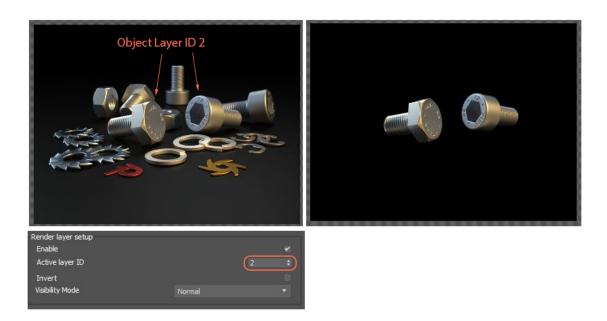


Figure 4: Rendering objects with an Object Layer ID of 2

Visibility Mode has four options:

- **Normal** Objects on the specified Active Layer ID are rendered, and objects with other Object Layer IDs rendered as cutouts.
- **Hide Inactive Layers** Make objects on the inactive layers invisible in the rendering, without rendering cutouts.
- **Only Side Effects** Similar to Normal, except the active layer is invisible to the camera, but its side effects are still captured without obstructing the active layer.
- **Hide From Camera** Renders inactive layer shadow contributions, but keeps the objects invisible in the rendering.

Glossary

A

Absorption

Defines how fast light is absorbed while passing through a medium.

Adaptive Sampling

A method of sampling that determines if areas of a rendering require more sampling than other areas instead of sampling the entire rendering equally.

Alembic

An open format used to bake animated scenes for easy transfer between digital content creation tools.

Alpha Channel

A greyscale image used to determine which areas of a texture map are opaque and which areas are transparent.

Anti-Ghosting

The automatic or manual correction involved in the merging a stack of images during the creation of a High Dynamic Range image. The process aims to correct the strange effect when objects that change position in the image set is partially visible (like a ghost) in the final HDR image.

Aperture

Determines how much light enters a camera lens. A large aperture produces a narrow depth of field and a small aperture produces a wide depth of field.

AR

Viewing a conceptual three dimensional scene in context to see how it might look in the real world.

Augmented Reality

Viewing a conceptual three dimensional scene in context to see how it might look in the real world.

В

Batch Rendering

The process of assigning sequential portions of frames to be rendered across multiple systems.

Black Body

An opaque object that emits thermal radiation. In Octane, this is used to designate illumination properties for mesh emitters.

D

Deep Image

Renders frames with multiple depth samples in addition to typical color and opacity channels.

Depth Buffer

A measure of object distances from the camera typically represented as a grayscale image.

Depth of Field

The distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image. Although a lens can precisely focus at only one distance at a time, the decrease in sharpness is gradual on each side of the focused distance, so that within the DOF, the unsharpness is imperceptible under normal viewing conditions. source: wikipedia (https://en.wikipedia.org/wiki/Depth_of_field)

Diffuse

Amount of diffusion, or the reflection of light photons at different angles from an uneven or granular surface. Used for dull, non-reflecting materials or mesh emitters.

Diffuse material

Used for dull, non-reflecting materials or mesh emitters.

Displacement

The process of utilizing a 2D texture map to generate 3D surface relief. As opposed to bump and normal mapping, Displacement mapping does not only provide the illusion of depth but it effectively displaces the actual geometric position of points over the textured surface.

DoF

The distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image. Although a lens can precisely focus at only one distance at a time, the decrease in sharpness is gradual on each side of the focused distance, so that within the DOF, the unsharpness is imperceptible under normal viewing conditions. source: wikipedia (https://en.wikipedia.org/wiki/Depth_of_ field)

Drivers

Files that allow hardware devices to communicate with an operating system. In the case of Octane, the latest Nvidia drivers should be used.

E

Effective Focus Range

The distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image. Although a lens can precisely focus at only one distance at a time, the decrease in sharpness is gradual on each side of the focused distance, so that within the DOF, the unsharpness is imperceptible under normal viewing conditions. source: wikipedia (https://en.wikipedia.org/wiki/Depth_of_ field)

Emissions

The process by which a Black body or Texture is used to emit light from a surface.

EXR

Also known as OpenEXR. This image file format was developed by Industrial Light & Magic and provides a High Dynamic Range image capable of storing deep image data on a frame-by-frame basis.

F

FBX

.fbx (Filmbox) is a proprietary file format developed by Kaydara and owned by Autodesk since 2006. It is used to provide interoperability between digital content creation applications. As of Octane 3.07, a scene node will also be available as an FBX file, allowing for quick and easy transport of assets from industry standard DCC applications

Field of View

The area that is visible to a camera lens usually measured in millimeters. A wide angle lens provides a larger field of view and a telephoto lens provides a narrow field of view.

Focus Range

The distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image. Although a lens can precisely focus at only one distance at a time, the decrease in sharpness is gradual on each side of the focused distance, so that within the DOF, the unsharpness is imperceptible under normal viewing conditions. source: wikipedia (https://en.wikipedia.org/wiki/Depth_of_ field)

FoV

The area that is visible to a camera lens usually measured in millimeters. A wide angle lens provides a larger field of view and a telephoto lens provides a narrow field of view.

G

Gamma

The function or attribute used to code or decode luminance for common displays. The computer graphics industry has set a standard gamma setting of 2.2 making it the most common default for 3D modelling and rendering applications.

Glossy

The measure of how well light is reflected from a surface in the specular direction, the amount and way in which the light is spread around the specular direction, and the change in specular reflection as the specular angle changes. Used for shiny materials such as plastics or metals.

Glossy material

Used for shiny materials such as plastics or metals.

GPU

The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Graphics Card

The GPU is responsible for displaying graphical elements on a computer display. The GPU plays a key role in the Octane rendering process as the CUDA cores are utilized during the rendering process.

Η

Hardware

Any physical device present in a computer system. A Nvidia GPU is a required hardware device for using the Octane Render engine.

HDRI

An image which presents more than 8 bit per color channel unlike most common image formats.

High Dynamic Range Image

An image which presents more than 8 bit per color channel unlike most common image formats.

I

IES

An IES light is the lighting information representing the real-world lighting values for specific light fixtures. For more information, visit http://www.ies.org/lighting/.

IFL

(Image File List) file is an ASCII file that constructs an animation by listing singleframe bitmap files to be used for each rendered frame. When you assign an IFL file as a bitmap, rendering steps through each specified frame, resulting in an animated map. (reference: https://knowledge.autodesk.com/support/3DS-max/learnexplore/caas/CloudHelp/cloudhelp/2017/ENU/3DSMax/files/GUID-CA63616D-9E87-42FC-8E84-D67E1990EE71-htm.html)

Imaging

Refers to periodically creating an image from the renderer for display (which may or may not include tone mapping as one step).

Independent Software Vendor

An individual or business that builds, develops and sells consumer or enterprise software. Although ISV-provided software is consumed by end users, it remains the property of the vendor. An ISV is also known as a software publisher.

Instancing

Instancing an object means taking a single imported mesh object, such as an OBJ or an FBX and making multiple copies, each of which can be placed in different parts of the scene. This saves an enormous amount of computational resources because only a single object is loaded into the scene.

Interactive Photorealistic Rendering

Provides artists a quick preview of the image prior to the final render, and efficiently allows for adjusting some elements in the scene such as lights, shaders and textures interactively. An IPR image contains shading and lighting data including some for visibility, in addition to the software render.

IPR

Provides artists a quick preview of the image prior to the final render, and efficiently allows for adjusting some elements in the scene such as lights, shaders and textures interactively. An IPR image contains shading and lighting data including some for visibility, in addition to the software render.

ISV

An individual or business that builds, develops and sells consumer or enterprise software. Although ISV-provided software is consumed by end users, it remains the property of the vendor. An ISV is also known as a software publisher.

Κ

Kernels

By definition, this is the central or most important part of something. In Octane, the Kernels are the heart of the render engine.

L

LDR

Image formats that have 8 bits per color channel such as the common image formats JPEG, PNG, GIF among others.

Low Dynamic Range

Image formats that have 8 bits per color channel such as the common image formats JPEG, PNG, GIF among others.

Lua

A scripting language that supports procedural, object-oriented, functional, and data-driven programming. It can be used to extend Octane's functionality. A scripting language that supports procedural, object-oriented, functional, and data-driven programming. It can be used to extend Octane's functionality.

Lua Scripting

A scripting language that supports procedural, object-oriented, functional, and data-driven programming. It can be used to extend Octane's functionality. A scripting language that supports procedural, object-oriented, functional, and data-driven programming. It can be used to extend Octane's functionality.

Μ

Material

The representation of the surface or volume properties of an object.

Materials

A set of attributes or parameters that describe surface characteristics.

Mediums

The behavior of light inside a surface volume described by scatter, absorption, and transmission characteristics.

Mesh Emitters

The ability for a surface to emit illumination usually described by a Black Body or Texture emission type.

Mix material

Used to mix any two material types.

Mixed

The ratio of diffuse and specular reflection.

Motion Blur

An optical phenomenon that occurs when a camera's shutter opens and closes too slowly to capture movement without recording a blurring of the subject.

Ν

Network Rendering

The utilization of multiple CPUs or GPUs over a network to complete the rendering process.

NGE

Node Graph Editor

0

Open Shader Language

A shading language developed by Sony Pictures Imageworks. There are multiple render engines that utilize OSL as it is particularly suited for physically-based renderers.

Open SubDiv Surfaces

A set of open source libraries that implement high performance subdivision surface (subdiv) evaluation on massively parallel CPU and GPU architectures. This code path is optimized for drawing deforming surfaces with static topology at interactive framerates. Source: Pixar (http://graphics.pixar.com/opensubdiv/docs/intro.html).

OpenVDB

Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, check at http://www.openvdb.org/.

ORBX

The ORBX file format is the best way to transfer scene files from 3D Authoring software programs that use the Octane Plug-in such as Octane for Maya, Octane for Cinema 4D, or OctaneRender Standalone. This format is more efficient than FBX when working with Octane specific data as it provides a flexible, application independent format. ORBX is a container format that includes all animation data, models, textures etc. that is needed to transfer an Octane scene from one application to another.

Out-of-Core

When scene assets become too large to load completely onto the system's GPU, Out-of-Core technology allows the render engine to utilize the CPU to assist in the rendering process.

Ρ

PBR

A contemporary shading and rendering process that seeks to simplify shading characteristics while providing a more accurate representation of lighting in the real world.

Portal

A technique that assists the render kernel with exterior light sources that illuminate interiors. In interior renderings with windows, it is difficult for the path tracer to find light from the outside environment and optimally render the scene. Portals are planes that are added to the scene with the Portal material applied to them.

Post Processing

Effects such as Bloom and Glare that are applied after a scene has been rendered.

Projections

Methods for orienting 2D texture maps onto 3D surfaces.

393 — Glossary

Proxy

An object saved as a separate file with the purpose of being reused in larger scenes. This is used to minimize any addition to the total polygon count in the scene, especially if the scene requires the same object to appear several times. If used in conjunction with instancing, Proxies help keep very large scenes from reaching polygon limits and also keeps the relative file size of the main project file manageable.

Proxy Server

A Proxy Server, also known as an application-level gateway, is an intermediary server between the local network and the external servers from which a client is requesting a service. The external servers will only see the network proxy server's IP address thus providing some degree of security and privacy. There are various kinds of proxies, the most common are Web Proxies.

R

RAW

In HDR imaging, this refers to minimally processed HDR image formats. Raw files can have 12 or 14 bits per color channel, although the available dynamic range might be cut down due to noise.

Render Layers

Render layers allow users to separate their scene geometry into parts, where one part is meant to be visible and the rest of the other parts "capture" the side effects of the visible geometry. The layers allow different objects to be rendered into separate images where, in turn, some normal render passes may be applied. The Render layers are meant for compositing and not to hide parts of the scene.

Render Passes

Render passes allow a rendered frame to be further broken down beyond the capabilities of Render Layers. Render Passes vary among render engines but typically they allow an image to be separated into its fundamental visual components such as diffuse, ambient, specular, etc..

S

Scattering

Defines how fast light gets scattered when traveling through the medium.

Shadow Catcher

The Shadow Catcher can be used to create shadows cast by objects onto the surrounding background imagery. The shadows cast are not limited to simply a ground plane but can be cast onto other surfaces of varying shapes.

Spectral Light Transport

A technique in which a scene's light transport is modeled with real wavelengths. Spectral rendering can also simulate light sources and objects more effectively, as the light's emission spectrum can be used to release photons at a particular wavelength in proportion to the spectrum. Source: Wikipedia (https://en.wikipedia.org/wiki/Spectral_rendering).

Specular

Amount of specular reflection, or the mirror-like reflection of light photons at the same angle. Used for transparent materials such as glass and water.

Specular material

Used for transparent materials such as glass and water.

Т

Texture Baking

A process in which scene lighting is "baked" into a texture map based on an object's UV texture coordinates. The resulting texture can then be mapped back onto the surface to create realistic lighting in a real-time rendering environment. This technique is frequently used in game engines and virtual reality for creating realistic environments with minimal rendering overhead.

Textures

Textures are used to add details to a surface. Textures can be procedural or imported raster files.

тмо

Maps HDR images to standard displays which have a limited dynamic range. The more prominent TMOs are Mantiuk'06, Reinhard'02, Drago, and Durand.

Tone Mapping

Refers to applying a curve to an image to reduce dynamic range

Tone Mapping Operator

Maps HDR images to standard displays which have a limited dynamic range. The more prominent TMOs are Mantiuk'06, Reinhard'02, Drago, and Durand.

Transformations

Tools used to rotate and position 2D and 3D texture maps onto 3D surfaces.

Transmission

A surface characteristic that determines if light may pass through a surface volume.

U

Unbiased Rendering

Unbiased rendering does not introduce any "errors" or shortcuts into the rendering process. It will calculate all scene data using real-world calculations. This type of rendering is known for producing exceptional render quality.

V

VDB

Dreamworks' open-source C++ library housing the data structures and tools implementation for storing and manipulating volume data, like smoke and other amorphous materials. The purpose of OpenVDB is mostly to have an efficient way to store volumetric data in memory and on disk. It has evolved into a more general toolkit that also lets you accomplish other things, such as fracturing volumes, converting meshes to volumes and vice versa. However, it does not include a computational fluid dynamics solver, and therefore it cannot procedurally generate smoke or fire. OpenVDB is fully integrated as a library in OctaneRender. For more information about OpenVDB, please see http://www.openvdb.org/.

Virtual Reality

Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

Volume Medium

A shading system designed to render volumes such as smoke and fog.

VR

Immersively engaging and experiencing depth perception in a three dimensional scene through stereo vision goggles and head-mounted displays.

Z

Z-Buffer

A measure of object distances from the camera typically represented as a grayscale image.

Z-Depth

A measure of object distances from the camera typically represented as a grayscale image.

Index

A adaptive sampling 279, 283, 288, 294 alpha channel 92, 100, 111, 119, 270, 272, 275, 329 AOV 39, 63, 70, 76, 78, 87, 89, 92, 101, 104, 112, 271 aperture 239, 250 В baking camera 242, 245, 372 D daylight environment 221 daylight model 221 depth of field 250 devices 4, 11, 29, 297 diffuse material 49, 64, 66, 80, 88, 94-95, 116, 131, 137-138, 145, 147-148, 186, 191, 193, 205, 343 drivers 1, 3, 9 Ε EXR 119, 256 F field of view 240, 249 FoV 239 G gamma 75, 100, 111, 121, 123, 129, 139, 143, 149, 157, 202, 227, 256, 272, 313 glossy material 61, 70, 88 graphics card 273, 300 Н hardware 1, 3, 11, 273, 298 HDR 59, 123, 271

Ι

IES 121, 129-130, 143, 182, 188, 190, 195, 223, 225, 273 imager 251, 280, 285, 296, 375 installation 1, 3, 7, 20 interface 8, 12, 315, 321

Κ

kernels

direct lighting 267, 273, 281, 376 info channel 267, 273, 289 path tracing 205, 267, 273, 278, 281, 294, 369, 376 PMC 90, 205, 267, 273, 278, 281, 286, 369

L

LDR 59, 123, 271

lights 24, 28, 47, 54, 57, 103, 187, 198, 217, 219, 223, 265, 273, 278, 283, 288, 296 low dynamic range 123

Μ

materials 26, 28, 41, 45, 50, 57, 60, 62, 64, 66, 70, 79-81, 85, 88-89, 93-94, 97, 103, 105, 113, 139, 150, 162, 168, 186, 205, 222, 231-232, 261, 265, 272, 275, 278, 292, 302, 304-305, 307, 309, 312, 335, 341, 375

mix material 87

Ν

nodegraph editor 57

0

Octane material 39, 64, 70, 76, 78, 87, 89, 91, 93, 101, 104, 113, 158 OpenVDB 338 ORBX 39, 64, 70, 76, 78, 87, 89, 91, 93, 101, 104, 113, 309-310, 332, 355 out of core 59, 272 panoramic 236, 240, 245, 249, 366, 370 panoramic camera 240, 246, 251, 366 post processing 260, 331, 336, 369

R

Ρ

render layers 38, 292, 331, 359, 374, 379 render target 299

S

sampling 188, 195, 197, 216, 220, 223, 227, 230, 257, 279, 283, 288, 293-294

specular material 88, 96, 206 sun 219, 256, 261, 335

Т

texture environment 196, 220

textures 2, 48, 59-60, 72, 89, 100, 111, 113, 115, 117, 121, 127, 129, 143, 148, 155, 157-158, 165-166, 168, 173, 176, 182, 201, 203, 212, 272, 280, 286, 299, 304, 308-309, 345, 367

thin lens 28, 236, 243, 247, 370

timeline 315, 341

tone mapping 255, 271

U

Unity Lights

Point light 103, 232

Unity settings 4, 6, 10, 29, 51, 57, 75, 84, 89, 92, 100, 106, 121, 129, 143, 156, 161, 189, 197, 201, 204, 216, 221, 230, 237, 244, 246, 251, 257, 260, 264-265, 267, 269-270, 275, 280, 283, 288, 290, 296, 299, 302, 310, 313, 315, 317-320, 323, 329, 331, 333, 352, 358, 375

V

VR 241, 243, 246, 331, 359, 366

Ζ

z-depth 291, 376